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Semirings with an Almost Division Algorithm

Elham MEHDI-NEZHAD and Amir M. RAHIMI

Abstract. The notion and some algebraic properties of additively absorptive
subsemirings of order ¢t > 1 (¢ a fixed integer) in a Euclidean semiring as a natural
extention of additively absorptive subrings of Euclidean rings is discussed. For
a fixed integer t > 1, a proper subsemiring D of a Euclidean semiring R with
Euclidean function ¢, is said to be additively absorptive (or simply, absorptive)
of order ¢ in R; if for each f in R, there exists h in D and ¢ in R such that
f=h+gand 1 < ¢(g) <t The main result of the paper states that if [ is a
k-ideal of an absorptive subsemiring D of order ¢ in R as a member of a subclass
of Euclidean semirings, then I can be generated by (¢t + 1) or fewer elements. In
addition, if I contains an element of ¢ value equals to i+ ¢(I) for some 1 <7 <t
with ¢(I) = inf{¢(f) | f € I}, then I cannot be a principal ideal in D. In this
case, D can not be a Bezout semiring (i.e., a semiring in which every finitely
generated ideal is principal).

Keywords: Euclidean semiring, subtractive ideal (= k-ideal), additively ab-
sorptive subsemiring of order t.
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1 Introduction

In this paper (unless otherwise indicated), R always denotes a commutative semiring with
identity 1 # 0, and Oa = 0 for all a in R. A subsemiring of a semiring R is a semiring that
contains 1r and Or. A nonempty subset I of a semiring R will be called an ideal if a,b € T
and r in R implies ¢ + b in I and ra in I. A subtractive ideal (= k-ideal) I is an ideal
such that if z,z +y € I, then y in I (so (0) is a k-ideal of R). The k-closure cl(I) of I is
defined by cl(I) = {a € R| a + ¢ = dfor some ¢,d € I} is an ideal of R satisfying I C cl(I)
and cl(cl(I)) = cl(I). So an ideal I of R is a k-ideal if and only if I = ¢l(I). note that in
[2], Golan uses the term ”subtractive ideal”, but in the literature of semirings, authors use
equivalently the term ”k-ideal” as well. In this work, we use preferably both terminologies
as well without mentioning that they are the same. For the sake of completeness, we state
some definitions and notions used throughout to keep this paper as self-contained as possible.
Also, for a detailed study of semirings and plenty of examples (counterexamples) together
with many related references, reader is referred to [2]. Here, before stating the definition
and main results, we write and reflect the definition of a (left) Euclidean semiring together
wit some examples (counterexample) exactly as given in Chapter 11 of [2] as follows.
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Let N be the set of all nonnegative integers. A left Euclidean norm § defined on a
semiring R is a function 6 : R\{0} — N satisfying the following condition:

() If a and b are elements of R with b # 0, then there exist elements ¢ and r of R
satisfying a = ¢b + r with r = 0 or d(r) < d(b).

A right Euclidean norm is defined similarly, except that in Condition (%) we have a =
bg + r. A semiring R is left [resp. right] Euclidean if and only if there exists a left [resp.
right] Euclidean norm defined on R. For commutative semirings, needless to say, the notions
of left and right Euclidean norm coincide.

Remark 1. In some algebra books such as [3], the definition of a Euclidean ring contains
another extra condition which is called submultiplicative condition and states ¢(ab) > ¢(a)
for all elements a and b in R with ab # 0. In Proposition 11.10 of [2], it is shown that this
condition is not necessary to be stated since it can be proved for every Fuclidean semiring
there exists a Fuclidean function (norm) that satisfys the submultiplicative condition. Thus,
we always assume that a Euclidean semiring satisfies the submultiplicative condition.

Example 1. Since every ring is a semiring, thus every Fuclidean ring is an example of a
Fuclidean semiring.

Example 2. The semiring N of nonnegative integers is Euclidean if we define the Euclidean
norm 6 by 6 :n—n ord:n— n2.

Example 3. Let S[t] be the semiring of polynomials in the indeterminate t over a division
semiring S and let = be the congruence relation on S[t] defined by sum a;t* = b;t* if and
only if a1t + ag = byt + by. Let R be the factor semiring S[t]/ =. Then there exists a left
Euclidean norm § : R\{0} — N defined by setting §(3_ a;t'/ =) =1 if a1 # 0 and equals to
0 if ag = 0 but ag # 0.

Example 4. Let R be the subsemiring of QT (the set of nonnegative rationals) defined
by R = {q € Q" | ¢ = Oor ¢ > 1} and suppose that we have a left Euclidean norm
0 : R\{0} - N. Let 0 < a < b be elements of R. If 6(a) > 6(b), then there would have
to exist elements q¢ and r of R satisfying a = gb + r, where r = 0 or §(r) < §(b). But
a < b implies that a < qb for all 0 # ¢ € R and a = 0b + r leads to the contradiction
d(a) =d(r) < (b). Thus, a < b implies that 6(a) < §(b) for all 0 # a,b € R. Hence, R\{0}
is order-isomorphic to the subset im(8) of N, which is impossible. Thus, no left Fuclidean
norm can be defined on R, and so R is not a left Euclidean semiring.

Example 5. The set 2N of all nonnegative even integers is a subtractive ideal of the semir-
ing of all nonnegative integers. It is not strong since 3 + 5 in 2N while neither 3 nor 5
belong to 2N. An ideal I of a semiring R is said to be strong whenever a +b € I implies a
and b are in I for all a and b in R. For a complete study of this, see Example 5.4 in [2].

In this work, we extend the work of Rahimi [5] as a natural extention of Euclidean rings
to Euclidean semirings. In Section 2, we define and study the concept and some algebraic
properties of additively absorptive subsemirings of order ¢ > 1 (¢ a fixed integer) in a
Euclidean semiring as a natural extention of additively absorptive subrings in Euclidean
rings. Also, examples of both absorptive and nonabsorptive subrings of k[x] (the ring of
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polynomials over a field k) are given. In Section 3, the main results of the paper are as
follows. If D is an absorptive and subtractive subsemiring of order ¢ in a Euclidean semiring
R with a Euclidean function ¢ which satisfies the following conditions:

(1) for all f,g,7 € R, ¢(fg) = 6(f) + #lg): amd

(2) ¢(r) < ¢(g) implies ¢(r + g) = ¢(g),
then for each f,g € D, g # 0, there exist ¢, € D such that f = gg + r with r = 0 or
o(r) < ¢(g) or ¢(r) =i+ ¢(g) for some 1 < ¢ < ¢. Furthermore, it is shown that if I # 0
is a k-ideal of D (not necessarily subtractive), then I can be generated by (¢ + 1) or fewer
elements. In addition, if I contains an element of ¢ value equals to i+¢(I) for some 1 <7 <t
with ¢(I) = inf{¢(f) | f € I'}, then I cannot be a principal ideal in D. Finally, in the last
section, we explore this subject through a general overview and show that the semiring D of
Part (ii) in Theorem 7 is not Bezout which consequently can never be a Hermite semiring. . .

2 Absorptive Subsemirings

In this section we investigate the concept and some algebraic properties of additively ab-
sorptive subsemirings of order ¢ > 1 (¢ a fixed integer) in a Euclidean semiring as a natural
extention of additively absorptive subrings in Euclidean rings.

Definition 1. Let R be a Euclidean semiring with Fuclidean function ¢, and assume t > 1
is a fized integer. A proper subsemiring D of R is said to be additively absorptive (or simply,
absorptive) of order t in R, if for each f in R there exists h in D and g in R such that
f=h+gandl <¢(g) <t.

Remark 2. Note that in [5], Rahimi has defined the absorptive subring of a commutative
Euclidean ring as follows: Let R be a Euclidean ring with Euclidean function ¢, and assume
t > 1 is a fized integer. A unitary proper subring D (i.e., 1p = 1r) of R is said to be
additively absorptive (or simply, absorptive) of order t in R, if for each f in R there exists g
in R such that f+g € D and 1 < ¢(g) < t. Here, we show that this definition is equivalent
to the definition of an absorptive subsemiring (given above) for the case of rings. Let D be
an absorptive subring of a ring R and f in R. Then there exists g in R such that f + g in
D. Let f+g=heD. then f=h—g=h+(—g) =h+¢, where ¢ = —g. Conversely,
suppose that there is an element h in D and g in R such that f = h+ g with 1 < ¢(g) < t.
thus, f + (—g) = h € D. Note that in a commutative Fuclidean ring, ¢(a) = ¢(—a) for any
a in R.

Example 6. Let k[z] be the FEuclidean ring of polynomials over a field k with the ”degree”
function as its Euclidean (norm) function (see [3]). Then for any fized integer t > 1, the
subring D = {f € k[z] | x,22,--- , 2t coefficients of f are zero} of k[x] is an example of
an absorptive subring of order t in k[z].

Example 7. Let k[x] be the Euclidean ring of polynomials over a field k with ”degree” as its
norm, and assume t > 1 is a fived odd integer. Define R = {f € k[x] | 27 coefficient(s) of
f is zero for all odd j s with 1 < j < t}. This is an example of an absorptive subring of
order t in k[z].
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Example 8. Let Z and Q be the rings of integers and rationals, respectively. Then Z[x] is
not absorptive of order t in Q[z] for any fived integer t > 1. Let f =1+ xz+ 22+ +at +
(1/3)x'Tt. From this, it is clear that f ¢ Z[x]. Now, it is impossible to have an element
h e Z[z] and g € Qlz] with 1 < deg (g9) <t such that f =h+g.

Theorem 1. Let R be a euclidian semiring with euclidian function ¢, and lett > 1 be a
fixed integer. Assume Dy and Do are proper subsemirings of R with D1 C Dy. Then the
following results are true.

(i) If Dy is not absorptive of order t in R, then D is not absorptive of order t in R.
Equivalently, if D is an absorptive subsemiring of order t in R, then any proper subsemiring
of R that contains D is also absorptive of order t in R.

(ii) let D1 C Dy C --- be an ascending chain of subsemirings in R, then UD; is an
absorrptive subsemiring of order t in R provided that UD; is properly contained in R and at
least one of the factors in the chain is absorptive of order t in R.

(#ii) Let {D;} be a family of proper subsemirings of R. If N;D; is an absorptive sub-
semiring of order t in R, then each factor of the intersection is absorptive of order t in
R.

Proof. We just give a proof for Part (i) and leave the other two parts to the reader. Assume
to the contrary that D; is absorptive of order ¢ in R. Let f € Ry. Now, by the assumption,
there exists h € Dy and ¢ € R such that f = h+ ¢ and 1 < ¢(g) < t. Hence, we can
conclude that D5 is absorptive of order ¢ in R, which is a contradiction. [J

Remark 3. From Example 8 and Theorem 1, we can conclude that no unitary proper subring
of Z[x] can be absorptive of order t in Qx] for any integer t > 1.

3 Main Results

A semiring is said to be zerosumfree whenever a + b = 0 implies a = b = 0 for all elements
a and bin R. A semiring R is (additively) cancellative whenever a + b = a + ¢ implies b = ¢
for all a, b, and ¢ in R. Note that the set N of nonnegative integers is a zerosumfree (resp.,
cancellative) semiring under the usual addition and multiplication. We will use these facts
in the following theorem.

Theorem 2. Let R be a Fuclidean semiring with Fuclidean function ¢ satisfying the con-
dition ¢(ab) = ¢(a) + ¢(b) for all elements a and b in R. Then the following results are
true.

(i) 6(1r) = 0.

(i) w € R is a unit in R if and only if ¢p(u) = ¢(1r) = 0.

(#ii) The identity element 1g of R is the only nontrivial multiplicative idempotent of R.

Proof. Clearly, for each nonzero element a of R, ¢(a) = ¢(1ga) = ¢(1r) + ¢(a) implies
that ¢(1g) = 0 since N is additively cancellative. Thus, for each unit u € R, we have
0= ¢(1r) = d(uu=?t) = ¢(u) + ¢(u~"') which implies ¢(u) = 0 since N is a zerosumfree
semiring. Now suppose for some a # 0, ¢(a) = 0. Hence, ¢(a) = ¢(1r) since ¢(1g) = 0.
Consequently, the result follows directly from Proposition 11.11 of [2] which states that in
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a commutative semiring R, ¢(a) = ¢(1g) if and only if @ is a unit. Finally, for the proof
of Part (i), assume e? = e. Then ¢(e) = ¢(e?) = ¢(e) + ¢(e) implies ¢(e) = 0 since N is
cancellative. Now, the result is immediate from Part (ii) since the only unit idempotent in
a semiring is its identity element 1. [J

A nonempty subset A of a semiring R is subtractive if and only if a € A anda+b € A
imply b € A. It is strong if and only if a + b € A implies that a € A and b € A. Every
Subtractive subset of R surely contains 0. Also, it is clear that every strong subset of R is
subtractive (see [2]).

Theorem 3. Let R be a Euclidean semiring with Fuclidean function ¢ satisfying the fol-
lowing conditions:

(1) $(f9) = 6(f) + élg) for all f,g € R\{0} and fg # 0.

(2) For all 1,9 € R, if 6(r) < 6(g), then ¢(r + g) = ().
Assume t > 1 is a fized integer and D is an absorptive and subtractive subsemiring of order
t in R. Then for any f,g € D with g # 0, there exist q,r € D such that f = qg + r with
r=0 or¢(r) < ¢(g) or ¢(r) =i+ ¢(g) for some 1l <i<t.

Proof. Let f,g € D with g # 0. Since R is Euclidean, then there exist ¢, € R such that
f=qg+rwithr=0o0r ¢(r) < ¢(g9). If ¢ € D, then r € D since D is subtractive and we
are done. Now, suppose ¢ ¢ D, then by hypothesis, there exists h € D and ¢’ € R such that
g=h+q¢ and 1 < ¢(¢') < t. Consequently, f = hg + r + ¢'g and since r + ¢'g € D, by
subtractive property of D, it remains only to show that 1+ ¢(g) < ¢(r 4+ ¢'g) < t + o(g).
Clearly, 1 < ¢(¢’) < t implies 1+ ¢(g9) < ¢(¢") + #(g9) < t+ ¢(g). Thus, from Condition (1),
we obtain 1+ ¢(g) < ¢(¢'g) < t+ ¢(g). Therefore, by applying Condition (2), it follows
that 1+ ¢(g) < é(r +¢'g) <t + ¢(g) since ¢(r) < ¢(g) < ¢(¢'g). O

Corollary 4. Let R be a Fuclidean semiring with Euclidean function ¢ satisfying the fol-
lowing conditions:

(1) #(fg) = &(f) + ¢(g) for all f,g € R\{0} and fg # 0.

(2) For all r,g € R, if ¢(r) < ¢(g), then ¢(r + g) = ¢(g)-
Assume t > 1 is a fized integer and D is an absorptive and subtractive subsemiring of ordert
in R. Then for any nonzero proper subsemiring (ideal) I of D and any f,g € I, with g # 0,
there exist q,7 € D such that f = qg+r with r =0, or ¢(r) < ¢(g), or ¢(r) =i+ ¢(g) for
some 1 <1 <t.

Theorem 5. Let R be a Euclidean semiring with Fuclidean function ¢ satisfying the fol-
lowing conditions:

(1) 6(fg) = B(f) + 6(g) for all f,g € R\{0} and fg #0.

(2) For all 1, € R, if () < 6(g), then ¢(r + g) = ().
Assume t > 1 is a fized integer and D is an absorptive subsemiring of order t in R. Then
for any nonzero proper k-ideal of D and any f,g € I, with g # 0, there exist ¢ € D and
r € I C D such that f = qg+r withr =0, or ¢(r) < ¢(g), or &(r) =i+ ¢(g) for some
1<i<t.

Proof. Let f,g € I with ¢ # 0. Since R is Euclidean, then there exist ¢,7 € R such
that f = qg + r such that » = 0 or ¢(r) < ¢(g). If ¢ € D, then r € I C D since
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I is a k-ideal and we are done. Now, suppose ¢ ¢ D, then by hypothesis, there exists
h € D and ¢ € R such that ¢ = h+ ¢ and 1 < ¢(¢) < t. Thus, f = (h+¢)g+r =
hg + (r + ¢'g). From this and the subtractive property of I, we get r + ¢'g € I. Hence,
it remains only to show that 1+ ¢(g) < o(r + ¢'g) < t + ¢(g). Clearly, 1 < ¢(¢') < t
implies 1+ ¢(g9) < o(¢') + ¢(g) < t+ ¢(g). Now by applying Condition (1), we obtain
L+ ¢(g) < ¢(d'g) < t+ ¢(g). Therefore, 1 + ¢(g) < ¢(q'g) <t + ¢(g), and by applying
Condition (2), it follows that 1+ ¢(g) < ¢(r+¢'g) <t + ¢(g). O

Lemma 6. Let R be a Fuclidean semiring with Fuclidean function ¢ satisfying the condition
that for allr,g € R, ¢(r + g) = ¢(g) whenever ¢(r) < ¢(g). Assume t > 1 is a fized integer
and D is an absorptive subsemiring of order t in R. Then for each a in R, the condition
¢(a) = 0 implies that a must be in D.

Proof. suppose to the contrary that a is not in D. Since D is absorptive, then there exists
h € D and b € R such that a = h + b with 1 < ¢(b) < t. Thus, 0 = ¢(a) = ¢(h +b) < ¢(b).
Now, we compare ¢(h) and ¢(b) in three different possible cases and show that it will
lead to a contradiction in either case. If ¢(h) < ¢(b), then by hypothesis, we will have
1 < ¢(b) = ¢(h +b) < t which is a contradiction. In other case, again by hypothesis,
¢(h) > ¢(b) implies 0 = ¢(a) = ¢p(h + b) = ¢(h) which is impossible since ¢(b) is strictly
larger than zero. We therefore must conclude that if ¢(a) = 0, then a must belong to D. O

We shall use this fact in the proof of the first part of the following theorem.

Theorem 7. Let R be a Fuclidean semiring with Fuclidean function ¢ satisfying the fol-
lowing conditions:
(1) #(fg) = ¢(f) + ¢(g) for all f,g € R\{0} and fg # 0.

(2) For allm,g € R, if o(r) < ¢(g), then o(r + g) = ¢(9).
Assume t > 1 is a fized integer and D is an absorptive subsemiring of order t in R. Let
I be a nonzero proper k-ideal of D with ¢(I) = inf{¢(f) | f € I} = j. Then we have the
following results:

(i) The ideal I as an ideal of D can be generated by t + 1 or fewer elements.

(ii) Assume further that for each nonzero a € R, the condition 1 < ¢(a) < t implies
a ¢ D; and also I contains an element h such that ¢(h) =i+ j for some 1 <i<t. ThenI
s not a principal ideal of D.

Proof. Part (i): choose an element g in I with ¢(g) = j. By Theorem 5, for each f in I,
there exist ¢, € D such that f = gg + r with the following three possibilities: (a) r = 0, or
(b) ¢(r) < ¢(g), or (c) ¢(r) =1+ ¢(g) for some 1 <4 <t

Now, the subtractive property of I implies that r» € I and the minimality of ¢(g) disre-
gards the possibility of the case ¢(r) < ¢(g). Also, for those f’s in I such that r = 0, it is
clear that f belongs to (g). Indeed, if for each f in I, Case (a) occurs, then we can conclude
that (g) = I.

Next, suppose for some element f in I, Case (¢) occurs. This implies the existence of
an element of I (namely, r in I) with ¢ value equals to i + ¢(g) for some 1 < ¢ < ¢. Thus,
J < &(r) <t+j and clearly r € I since I, is subtractive. Therefore, it is clear that the
set C' = {m € N | Icontains elements that each of which having ¢ value m with j <
m < t+ j} is not empty. Assume that the cardinality of C' is |C| = k. Now, label the
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elements of C' as mi, ma, ..., and my, where m; > mo > --- > my. By construction
of C, we can choose k elements fn,,, fmys --., and fp,, from I with ¢(f,,) = m,;, where
i = 1,2,...,k. Thus, it is clear that ¢(r) = ¢(fm, ) for some 1 < i3 < k. Since R is
a Euclidean ring, then there exist a;,,r1 € R such that r = a;, fm, + 71 with 11 =0
or ¢(r1) < ¢(fm,, ). Assume that 11 = 0. Then r = a;, fin, , and ¢(r) = ¢(as,) + ¢(fin,,)
implies that ¢(a;,) = 0 (N is cancellative). Therefore, by Lemma 6 (above), a;, € D. Hence,
we obtain f = g +1 = qg + @, fr, € (9, ). Now suppose r1 # 0 and ¢(r1) < ¢(fm,, ).
Thus, we have ¢(r1) < ¢(fm;,) < ¢(ai,) + ¢(fm,,) = é(ai, fm,, ), which by hypothesis, it
implies ¢(ai, fm,, +71) = ¢(ai, fm,, ). Now we have ¢(r) = d(ai, fn,, +71) = ¢(ai, fm;,) =
¢(ai,) + ¢(fm,;, ) which implies ¢(a;,) = 0. Thus, thus again by applying Lemma 6, we get
ai, € D. In this case, it is clear that ¢(r1) = @(fim,,) for some i; < iz < k. Again, by
the division algorithm, there exist a;,,r2 € R such that r = a;, fmi2 + r9 with 79 = 0 or
d(re) < qb(fmlé). By the same argument as we showed a;; € D, it can be shown that (in
either case of 72 = 0 or ¢(r2) < ¢(fim,,) that a;, € D. Consequently, whenever ry = 0, we
have f =qg+ 1 =qg9+ ai, fm,, + 71 = q9 + @i, fm;, + @i, fm,, which clearly belongs to the
ideal (g, fm,, s fm,,). Obviously, by continuing the process of argument as above, we get the
elements r, 11, rg, ... of I with j+1¢ > ¢(r) > ¢(r1) > ¢(r2) > --- > j. Thus, we reach
an element ry € I with ¢(rs) = ¢(g) and rsy; = 0. Actually, by the division algorithm in
R, there exist ¢/,rs4+1 € R such that rs = ¢’g + rsy1 with 7411 =0 or ¢(rs11) < ¢(g). But
the subtractive property of I implies that rsy; € I,, and therefore, the minimality of ¢(g)
excludes the choice of ¢(rs+1) < ¢(g). Hence rs = ¢’'g and ¢(rs) = ¢(¢')+d(g), which implies
#(¢") = 0. Now, by Lemma, 6, ¢’ € D. Thus, f = qg+ai, fm,, +@i, fm,, +--+q g belongs to
(9s frmys frnay - -+ fmy ), which proves that I = (g, fomy, frngs -« -5 frmy, ), Where my, ma, ... ,myg €
C. This completes the proof of Part (i).

Finally, for the proof of Part (ii), assume that for each nonzero element a in R, the
condition 1 < ¢(a) < ¢ implies a ¢ D, and also I contains an element h with ¢(h) = i+ ¢(g)
for some 1 < ¢ < ¢. In this case, suppose to the contrary that I is principal and I = (g) with
o(I) = ¢(g) = j. Hence, h = qg for some ¢ in D. Therefore, ¢p(h) =i+ j = ¢(q) + j implies
1 < ¢(q) = ¢ < t. Thus, by the assumption, this makes ¢ ¢ D, which is a contradiction.
From this, we can conclude that h ¢ (g), i.e., I is not contained in (g). In other words,
no elements of I with ¢ value equals to j can generate I in D. Now, suppose there exists
an element ¢’ in I which generates I in D. From the above argument and minimality of
j = ¢(g), we must have ¢(g’) > ¢(g). Since g € I, then g = ¢'¢’ for some ¢’ in D, and
hence, ¢(g9) = #(¢') + ¢(g') > @(g’). This is a contradiction and the proof is complete. O

In view of the above theorem, clearly, every k-ideal of D is a finitely generated ideal in
D. Furthermore, in the next section, we will show that D is not a Bezout semiring, which
consequently, can never be a Hermite semiring since every Hermite semiring is Bezout.

4 A General Overview
This paper is a natural extention of the work Rahimi [5] on commutative Euclidean rings

to commutative Euclidean semirings. In [5], the work of Nick H. Vaughan [6] and [1] has
been extended to a special class of Euclidean rings. In [6], it is shown that the subring
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D = {f € k[z] | z coefficient of f is zero} of k[z] the Euclidean ring of polynomials over a
field k satisfying the following conditions:

(1) For any f,g € D, g # 0, there exist ¢, € D such that f = gg + r with »r = 0, or
deg (r) < deg(g), or deg (r) =1+ deg (9).
(2) Any ideal I of D can be generated by one or two elements.

In [1, Propositions 3 and 4], Results 1 and 2 (above) are generalized, respectively, to (1)
and (2') as follows.

For any fixed integer t > 1, let D®) = {f € k[z] | 2,22, ...,z coefficients of f are zero}.
Then the following two results are true:

(1') for any f,g € D), g # 0, there exist ¢, € D® such that f = qg+ r with = 0, or
deg (r) < deg (g), or deg (r) =i+ deg (g) for some 1 < i <t;
(2') any ideal I in D can be generated by (t 4 1) or less elements.

As we mentioned above, the main purpose of [5] paper was a natural extension of Propo-
sitions 3 and 4 in [1] for unitary subrings of a special class of Euclidean rings. A unitary
subring D of a unitary ring (i.e., a ring with identity) R is a subring of R with 1p = 1.

In this section we mention some properties of D®) as a general form of D) which was
studied in [6, Sec. 3]. It is fairly routine to show that D(*) satisfies the properties of D
(=DW) as stated in [6, Sec. 3]. Additionally, since D*) is not integrally closed, therefore, it
is clearly neither Prufer nor Dedekind. Similarly, D® is furthermore not a valuation domain
[4, pp. 12-14], nor a pseudo-Bezout domain [4, p. 15] (a domain is pseudo-Bezout if every
pair of elements has a greatest common divisor). Thus, D® is also not Bezout.

Remark 4. In the statement of Theorem 7, we assume ¢(r + g) = ¢(g) provided that
o(r) < ¢(g). This assumption is very natural and exactly similar to the case for k[x] of the
FEuclidean ring of polynomials over a field k with the ”degree” function as its Fuclidean norm
(function). But for the same condition in Theorem 3 of [5], we assumed that ¢(r+g) = ¢(g)
whenever ¢(r) < ¢(g). Note that in the proof of the first part of Theorem 3 of [5], we
have used the assumption that for any a in R with 1 < ¢(a) < t, then a ¢ D. But in
this paper, for the proof of Part (i) of Theorem 7, we indeed by virtue of Lemma 6 have
relaxed this condition. Actually, the proof of part of this lemma depends on the assumption
that 7¢(r + g) = ¢(g) whenever ¢(r) < ¢(g)” rather than the condition "¢(r + g) = ¢(g)
whenever ¢(r) < ¢(g)” which was used in [5] and was not applicable to prove a lemma
similar to Lemma 6.

A semiring R is said to be Hermite provided that for all a,b € R, there exist ay,b1,d € R
such that a = a1d, b = b1d, and (a1,b;) = R. In the following lemma, we show that a
Hermite semiring is necessarily Bezout. A Bezout semiring is a semiring in which every
finitely generated ideal is principal.

Lemma 8. FEvery Hermite semiring is a bezout semiring.

Proof. Proof by induction. Let n > 2 be a fixed integer and (z1, 2, - ,2,) an ideal in a
semiring R. By the hypothesis, for 1 and x5, there exist a1, as, and d; in R such that x; =
a1dy, To = asdy, and (a1,a2) = R. From this, it is clear that the ideal (z1,22) C (dy). On
the other hand, 1 = ryay + reas for some ry and r9 in R. Hence, d; = riaidy + reasdy which
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implies dy € (z1,x2). Consequently, (z1,22) = (d1), which implies (21, z9,23) = (d1,23) =
(dg) for some dy in R. Now by an inductive argument, we get (z1,Z2, - ,Tn_1,%n) =
(dn—2,%n) = (dp—1) for some d,,_1 in R. O

Theorem 9. Let R be a semiring that satisfies Part (ii) of Theorem 7 (above). Then R is
not bezout, and consequently, not a Hermite semiring.

Proof. The proof follows directly from Part (ii) of Theorem 7 and the above lemma. O
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