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ON GEL'FAND ELEMENTS OF BANACH ALGEBRAS
AND RELATED PROSLEMS OF HARMONIC ANALYSIS

Mohamed AKKOUCHI" . El iwueine El QORACHI® and Allal BAKALL

ABSTRACT ; We introdnce in this paper the notion of a Gel'land element in a
Banach algebra with invelation. When this algebra possesses sufficientely many irreducible
*-representaliong, we give a charactcoization by means of Representation theory of such
eleinents. We determine Gel'fuid elements for u class of (*-subalgebras of the algebra of
all bounded operators in a Hilbert space. We give some sufficient conditions of existence of
Giel'fand elements in a general £ -algebra using the notion of Moore-Penrose inverse. In the
case of 1neasure alyebra of a group, Gel'fand elements are called Gel'fand measures and were
introduced in [Ak-Bal, We deterinine the Gelfand neasures of the measure algebra of a finite
group. Finaly, in the case of Gel'fand measure p with a compact support in a unimodular
group (7 with a growth being atinost of polynomial type, we deal with a specialized question
of Harmonic Analysis namely, we prave that the algebra L{(G) := p = L;(G) » p is regular,
symmeiric and satisfies Wiener condition : that is, the ideal T* formed by all elements in
L?G) having their g-spherical Tourier transform of compact support in the set of characters
of the commutative algebra Ly (G) (cf.[Ak-Ba]).

Kew words : Gel'fand element, measure algebra, Gel'fand measure, Wiener property. C*-
algebra. Moore-penrose inverse. *-representations. *-Banach algebras. Symmetric algebra.
Regular algebra...
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INTRODUCTION : In the section 01 , we consider a banach algebra A with an
involution denoted by * and a unit clement denoted by 1. we say that an element e € A is
a Gel'fand clement if ¢ is idempotent ( Le. ¢ = e }, hermitian (i.e. ¢* = ¢ and the closed
subalgebra e Ae is commutative. [n the theorem 1.1, when the algebra A has sufficientely
many irredurible *-representations, we give a characterization by means of Representation
theary for its Gel'land elements, For a given Hilbert space H, denote by A a C*-subalgebra
of Z{H), the algebra of all bounded nperators in 1, if A is irredueible and contains a compact
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perator, ther an operator £ou o Ged fand elenent in Aifand only if £ i projection of rank
che, in general, iLeay Bapen that a &7 algebra ails to contain Gl fund ::[t‘.'ﬂr‘m%{(‘r-[':_:f.}}:'.
The existence inw C " alee Lo of sorral. regular and abelian clements inplies the existrars
of Gel'fand elements. Toasider B o subalgebra of A and let e be a Gel'fand element in
we give in theorem L4, nevessnry and sufficient conditions for e Lo be a Gel'fand elemnent
in A, We apply theorem 1.1 in the =cetion 0”2 | to deseribe Gel'fand measnres of a finite
group, The result obtained i given in the theorem 2.1, In third and last section, we consider
the case of a unimodalar group with growth being atmost of polynomial type. We prove,
in thearem 3.3., by u=ing a functionnal calenlus introduced by J.Dixmier {cf.Di]} and nsed
by O.Gebuhrer {cf[3]} in his work oo Gel'fand - Levitan spaces; that if g is a Gel'fand
measure such that its cupport is compact in G, then the algebra L{(G) := p» Li(G) «
satisfies the Wiener property : that is, the ideal T#(G) formed by all elements in L%({G)
having their p-spherical Fourier transform of compact support in the set of characters of
the commutative wlgebra L;{(7} (ef[Ak-Ba|). In particular, this is true if the group G is
commiitative or compact.

1.Gel'fand clements in a Banach algebra with involution

In this section, A means a cemplex Banach algebra with unit element | and an involution
denoted by * | We nssume thal A has a complete set of irreducible®- representations.
This is realized if.for example,A 1s reduced. We shall denote A the set of all *- irreducible
representations of A.

Definition 1.1. Let e € A satisfying ¢? = e* = e. we say that ¢ is a Gel'fand element
in A if the vlosed subalgebra e.4e is commutative,

The following theorem gives characterisations of Gelfand elements ind by use of
representation theory.

THEOREM 1.2, let A be an involulive Banach algebra having a unit element and =2
complete set of irreducible *-representations. Let e € A verifying ¢ = ¢ = e*. Then the
fullowing are equivalents :

{11 ey a Gel"fand elagent in A

{2)Vor all (=, K1 £ A the cunk of the operator w{e} 5 0or 1,

{(3For all (2, H-1 2 A wid 1z all 7 € e Ae the operator 7(z) is of rank 0 or 1.
(HFor all (2, H 08 A the dimension of the space {m(2) 2 €edebisOar L.
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Proof :

h) =2 120 Seppose that ede s commutative. Let (7. M) be an irreducible *
Ml

representation of A, or wil vee
detined hy ¢

turs i in the space M, ; we consider the operator E:

byall) =<0y > §;

for al! @ in the space H, ; where <> means the scalar product in this space.

For all elements z, y in A, we have
riejwlzimiem{ginie) = zlejwly)rle)n{z)n(c).

By assumiption,  is irreducible. Then Yon-Neumann density theorem { of. [Ga] ) ensufes that
the subspace ={A} s strongly dense in the algebra £ (K, ) of all bounded linear operators
on the hilbert space H., Then the following identi.tjr holds for all bounded operators 5 and
T on the space H, :

w{e)Sele)Trle) = nle)Tr(e)Sn(e).

If we lake § = K¢ 5 and T =k, ; where £, p in the space H ; then we have :

e Exiorg e = (7] Begernrtenn

Nhich proves that 7{e} is of rank 0 or 1.

12) = (1) Is evident.

(3] = (11 1t follows from the fact that : {#{z);z € eAe} is included in the space of
dimension one : Cale).

(4} == (1] results froin e assumption made on A to have a complete set of irreducible
“.representations, ||

REMARKS : (a) If G is alocally conipact group and A = M,(() is the Banach
algebra ol bounded complex messures on G, A Gel'Tund element of A is said a Gel'fand
measure (¢f. Ak, Ba]} .

{(b) The notion of Gel'fand eleme:! may be defined- in general-in an involutive algebra
having cr aot 4 unit element, The theorem | s valid in an *-Banach algebra A which has o
comolete st of irredueible ™ representations and just an approximation of unit.
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{e) Let A be an ™ Hanach alpebra with unit clenent. Lo B be an involutve subidgeben

4

{without st clement] of A aense v A or just having an approxietion of unit. Let ¢ € A

sueh Uit 0 e® = 0" = o ther o s GedTand clement in A and only 1 cBe s commutative,

NOTATIONS : o1 A Le a Banach “-algebra, and ¢ € A satislying : ¢* =" = ¢ For
all *-representation (=, H| of A we will denate H, the closed subspace iavariaal by 7 and
gencrated by the range of Use operitor 7{c). Tor all 2 € A, the restriction of the operator
(2] W the subspace M, (resp, to the erthogonal : H of the space H, ) will be denoted :
Tole) (respeet. mlel) . We ohinin then two *-representations of A : (7., H.) and (wl, ML)

verilying

and 7. {e} is the restriction of 7 to H,. 'n particular, the operators (e} and =.(e) have the

SA0e TROE.

Let A, denote the set of all irredncible *-representations (x, H) of A such that : () # 0.

PROPOSITION 1.3. Lete € A such that ¢ = ¢* = ¢, Let {r, H) be an *-representation
of A,with a cyelic veetor £ which is «-invariant (i.e. 7(e) =€ | . If w(e) is of rank one , then
th representation (x, H} is irreducible,

Proof @ Let us denote Hy the closed subspace of H wich is invariant by =. Then the
orthogonal projection £y on X, commutes with ={«). Write & = Fi(€). By assumption, we
must have : & = of, where o is a complexe number. then, two cases occur : first case, if
w # 0, then £ € Hg, wich implies, since £ 18 eyelic, that Hy = H. Second case, If @ = 0, then
¢ belongs to My the orthogonal of Ma, since this space is itself invariant by 7, we deduce
that Hy = 0. [

THEOREM 1.4. Let A bea Banach *-alzebra. Let B a banach *-subalgebra of A. Consider
¢ & B a Gel'Tand element of B. Then the following statements are equivalents :

(1) e 1% a Gel'fand element of A.

(2] Fur all *-representation {7, H} £ A, we have :

{mig), s irreducible; where 7|g is the restriction of 7 to 8.
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Proof :

(1} = {2). let {7, H) be an irreducible “-representation of A verifying 7{e) £ 8. Then
there exists an element § £ M, such that [ = 1 and =(e) = Fg: Let p denote ihe
restriction of 7 to the snbrigebra B. Then we have :

p=pompr and H=H, Hr

where H, is the closed subspace of X invaniant by {plh) : h € B} generated by the
range of o(e) which coincides with €¢, the range of =(e). This implies that £ € M, : and
pele)é = mle)l =L,

Then £ is a vyclic vectar for the representation (p,, H.). The proposition 1.3 ensures
that (p., H.) is an irreducible representation of B and belongs to B,.

(2) = {L]). Let {x, H) £ A.. Tet p be the restriction of 7 to the Banach *-subaigebra
B. By assuniption, g, € 8. since (e) # 0 then p, (e) is of rank one. Hence the operator (e}
s of rank one in the space H. [ )

2, Gel'fand elements of (*-algebras .

2.1. case of ("-algebiras of bonnded operators in a Hilbert space .

Consider £{M) the algebra of all bounded operators in a Hilbert space H. Recall that
for all vectors £, 7 in H, E¢ , means the operator of rank one defined by :

Feqlf):=<8in>¢§

for all # in the space H, : where <|> means the scalar product in this space. We denote
LM the vlosed two-sided ideal in L(H) formed by all compact operatars. The following
result gives a rhuructerisation of Gell’and elements for a class of C*-subalgebras of £{H).

PROPOSITION 2.1.1. Let A be an irreducible C*-algebra contained in L(H) such that
AN L H) £ 0. Let E be in A. Then E is & Gel’fand element in A if and only if E is of the
type Fy ¢ where £ € H is & vector with norm one.

Proof : The assumptions made on A implie that C.(H) is contained in A. (see for
example [Dof, theorem 5.39, p.141) Now let E be a Gel'fand element in the algebra A. Then
I satisfies -

ETESE = ESETE  WT,S€ A 1)

Sinee £ F# 0, then there exists yp € W such that < £y | 3 ># 0. Now fix such n and take
(e X Hy 1} we have :
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J'r'.. ;'IH n P ."r’ .Ilr &= I 'r.J Ir.'r;,r n E

3 e ey =€ BCLC3 By
Wich proves that £¢ 2nd Ly are proportionnals. Hence the operatoc E is an orfhogenai
nrojection of rank cne,

The converse is chvious. [

AE & COnE CE, W Q17 s
\# a consequence, we have

COROLLARY 2.1.2, Tet £ bein £iH). Then : E is a Gel'fand element in L{H) if and
only if E is of the type F¢ ; where £ € H is a vecior with norm one.

2.2. General case @

In general a C*-algebra does not have Gel'land elements. In the paper [Co| J.M.Cohen
gave example of C*-algebras without idempotents. We give here some sufficients conditions
for existence of Gel'fand elements in a given (*-algebras.

PROPOSITION 2.2.1. Let A be a (non commutative) C*-algebra having a unit element.
If A contains a normal regular element a € A such that a.Aa is commutative, then A contains
Cel'fand elements.

Proof : Since a is regular (i.e. a € u.Aa), then by a result from [Ha-Mb the element aa®
is also regular. Furthermore, the closed subalgebra ua®Aae® is commutative. So, without
loss of generality we can suppose that a 1s regular and selfadjoint.

By {[Ha-Mb], theorem 6) o must have a (unique) Moore-Penrose inverse at € A The
element a* s also selfadjont and by definition commutes with a. Put e:= aat. Theneisa
(icl'fand clement in A. (]

3. Gel'fand elements of measure algebras of groups.

Let (7 be a locally compact group, we mean by My((7), the algebra of all complex
bounded messures on 7. We denote &{(7) the space of continuous functions on G with -
compact supporl. We call Gel'Tand measure (of./Ak] ;'Ak-Bal) a measure which is a Gel'fand
clement of My(€7). In the first subsection we study the finite case .




Akkouchi, El Qorachi and Bakali 113

3.1. Gel'fand measures of a finite group.

Let G be a finite group and denote G| its order. Recall that in this case M;(G)
coincides with the algebra of all complex functions on G and that G is finite. put
G = [Aly oo An}; where N = ‘G! € N* Forj = 1,2,.., ¥ we denate d; = dimH;,
where (7;, ;) is an elemeat of the class A; and for £ € H; with ||¢|| = 1 the function :

Ci(t) =< E|m;(t)E >; 1€ G
is called a coefficient associated to }; for j = 1,2,..., V.
With these notations, we remark that if u is a function of type :

pu(t) = Zd;ﬂ'l[i] :

AES

where 5 C G and C,, is a a coefficient associated to A . then o is a Gel'fand measure on G
Conversely, we have : a

THEOREM 3.1.1. For all Gel'fand measure u on G, there exists a unique subset 5 C G
such that :
pi=) di0y;

whre C, 1s a coefficient associated fo X .

Proof : Let p be a Gel'fand measure on G, the theorem of Peter-Weyl shows that we
can write :

. N dy
WO =34 Y oy <elm(t)el >
i=1 k=1

where (;, H; ) is an element of the class A; and {e}1 :1 < d;} is an orthonormal basis of the
space H; ;forj=1,..,N .

Put : §:= {ra(p) # 07y € A}. Hence m,(4) is of rank one for all A € 5. (If 5 is empty,
then u = 0. Trivial case.) Let A € 5, take ky € {1,..., N} and consider (7,, Hg,) € A (i.e.
A= A,). Then a calculation using Schur orthogonality relations proves that :

ki

< Tr_:.u{,u}eiﬂe:“ >=ag,
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Since the operator @y, (¢} is of rank one, then we can construct an orthonormal basis
{“;ﬂ“"’nﬁm } of the space My, such that the first vector n® generates the range of the
operator 4, (u). these considerations show that in suitable bases we can write p as :

fi= Zd;C;,, 1

MES

3.2.0n the existence of Gel'fand measures on groups and other problems :

In the papers [Ak] and [Ak-Ba|, many examples of Gel'fand measures on groups are
given, a theory is established for them generalising the notion of Gel'fand pairs (cf.[Fa]).
But the study of their sructure, nature of their support,a general theorem of existence,... are
not examinated yet. Note that, contrary to the case of Gel'fand pairs where the group must
be unimodular, our theory is valid even in the non unimodular case, that is : there exist non
unimodular groups having Gel'fand measures (cf.[Ak-Ba] and [Ak],for examples).

3.3. Wiener property for algebras associated to Gel'fand measures with
compact support on groups of polynomial growth :

In all this subsection, we assume that the group G is unimodular its growth being atmost
of polynomial type. Let 4 be a Gel'fand measure on G such that its support is compact in G.
Call e the unit element of G, o the Haar measure of G. Recall that the Plancherel measure
w associated to p (cf.[Ak],[Ak-Ba]) has the set G, := {n € G : () # 0}, as support,

Firstly, let us introduce the functionnal caleulus of J. Dixmier (cf.[Di]} to the *-Banach
commutative algebra L{ (&) := p* L(G) % p

Let N € IN be a fixed integer majorizing at infinite the growth of G that is :
(V™) = O{a") , when n — oo, where V is & compact neighborhood of e. For all complex
number A and f € L{(G) , we denote ezp*iAf the element of €8, & L}(G). (6, being Dirac
measure concentrated at e} defined by : :

. ) o0 iy .
cap'(i) = Y L
n=0

where f** := .fvc_f... « f (n times),
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LEMMA 3.3.1. Let f € L}{G) " LY{G) with compact support and verifying flz) = f,
where f(z) := f(z-1);2 € G. Let ¢ be a complex function defined on I (set of the reals)
having all derivatives of order < N + 3 continuous and integrables with (0} = 0. Then :

(1) the integral: = [ ezp*(iAf i6(A)dA converges absolutly in L#(G) to an element denoted

by #{f}. _ ,
(2) For all hermitian character y of the Banach algebra L*(G), we have ¢{f}(x) = #(f(x))

———

where ¢{f} is the p—spherical Fourier transform {cf.[Ak-Ba]) of the function ¢{f} belonging
to the algebra L{{G).

(3) If §(t) =# (p € N}; for t] < ||/, ; then §{f} = f*".
One can prove this lemmna by adapting (as in [Ge]) the proof of J.Dixmier (cf.[Di]).

THEOREM 3.3.2. The *-Banach commutative algebra L} (G) is symmetric.

The proof of this theorem is analogous to one given in [Vo| in the context of Hyper-
groups,

THEOREM 3.3.3. The *-Banach commutative algebra Lf{fr'] is regular.

Proof : It is sufficient to prove that if xo € E, (the Gel'fand spectrum of L{(G)) is a
character and ® is a closed subset of the set of all characters of L{(G) such that yo € @;
then there exists a function g € L{(G) verifying : §(xo) = 1 and §(x) = 0 for all x € ®.

Let « be a continuous function with compact support on the set of all characters of
L¥(G) satisfying :

afyp)=1; 0<a<l and supp(e) C 9"

Since the set F(L{(G)) is dense in the space C5(E,), where F is the y-spherical Fourier
- transform; then we can find a function g € L{(G), hermitian and satisfying [|§ - af| , < 3.
The density of the subalgebra y = K(G) # u in the algebra L{(G) ensures the existence of a
hermitian function f € L}(G) with compact support such that : ||f - gl|, < 3.

One can verify that : ‘f[xn]l‘ > % This shows that we may choose ¢ € S(R) (S(IR)
being the Shartz space) verifying :
L

6{/Hxo) = 1 and supp(¢) C R\ {'%’ '?
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One can verify also that © fixi < + for all y € ®. This implies that the function ¢{f}
given by lemma 3.3.1. satisfics :

——

‘-"{FH.‘(-:J] =1 and  o{f}x) =0; forall y € &.

This completes the proof. ]

We shall denote by I"{(7} the ideal formed by all functions f € L{(G) such that F{(f}
has compact support in the space L.

The following lemma is due to J. Dixmier (cf.[Di]).

LEMMA 3.3.4. Let » be an integer > 1. Let ¢9 € S(R), such that : go(t) = "' in 2
neighbourhood of 0. Then for all € > 0, there exists a function ¢ € S(IR), verifying :

(1) oty = dolt) if [t > 1L
(2) 4(t) = 0 in a neighbourhood of 0 and

(@) sup{[o® - o] 5 i=0.ur}<e

Now, applying the functionnal calculus introduced before, we are able to prove Wiener
property for the algebra L(G) precisely, we have :

THEOREM 3.3.5. The ideal T/(G) is dense in L*(G) .

proof :

Let N be an integer dominating the growth of G at infinite . Let K denote the support
of g. K is a compact subgroup of G. Let V be a neighbourhood of 1, the unit element of G.
Then there exists a compact neighbourhood [ of 1, such that I C V.

Let f be a hermitian and positive element of K(G) having a compact support contained
in [ with integral being equal to one . Let ¢y € S(IR) be a function verifying go(t) = t¥+*
for [t] < ||f*],. From lemma 3.3.1 , we deduce that : ¢o{f*} = [f“]‘{NH}. Then ¢o{f*} is
an element of L{((3) .The lemma 3.3.4. | proves the existence of a sequence {4, } formed by
elements ¢,, € ${IR) such that ¢,{f*} converges in L, (G] to ¢o{f*}. We kow by the same
lemma that for all n > 0, the function ¢, vanishes on'a neighbourhood of 0,as a consequence,
we deduce that 0 {f} belongs to the closure of I'(G) in the space L%(G).
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Let g € LY{G). Let € > 0.Then there exists V' be a neighbourhood of 1 such that for
all positive h € K(G) with integral being equal to one and support included in V', we have :
iéﬂ_ﬂ*h|i1 <E

Now, take f and ¢, as above, then by applying :

WEpl .~ oo
I < dal® and  fig=—gx 2 < el

we have the lollowing inequalities :

lo= = 00{f*}ly = g = g 1149

N+4

< Z g [P " = g = [£47)

1

N+d
j=-1
<lg=gx ', Y1l < Me.

j=1

Where M is a positive constant depending only on N and p, []

REMARKS : (a) As a consequence, we deduce that for all y-spherical function ¢ on
(7, we have o(z~") = HI_}

(b} I we take (¢ commutative and p the Dirac measure, then we find a classical result
of harmanic analysis on locally compact abelian groups (see for example [Re],[He-Rol,...).

REFERENCES

CAk] M. AKKOUCHI, Mesures de Gel'fand et fonctions sphériques généraliseés.
These d'etat. Univ. Ibn Tofail, Kenitra (Maroc) 1994,

[Ak-Ba] M. AKKOUCHI anp A. BAKALI une généralisation des paires de Gel'fand,
Bollettino U.M.L (7) 8-B (1992), 795-822.

[Co] J.M. COHEN, €*-algebras without idempotents, Jour. of Funct. Analysis. 33
(2) (1979), 211-216. .

[Di] I DIXMIER, Opérateurs de rang fini dans les representations unitaires,
LH.ES.S. (1980), 305-317,



118

[Do]
[Fa]
[Ga]

[Ge]

On Gel'fand Elements

R.G, DOUGLAS, Banach algebras technigues in operator theory, Academic
Press, new York .

J. FARAUT, Analyse hurmonique sur les espaces Riemanniens syméiriques de
rang un, cours C.LM.P.A. Université de Nancy 1, {1980).

S.A. GAAL, Lincar Analysis and representation theory. Springer- Verlag, Berlin,
1973. :

0. GEBUHRER. .inalyse harmaonique sur les espaces de Gel'fand- Levitan et
applicativng & In theorie des semi-groupes de convolution. Thése d'etat. Univ.
L.Pasteur, Strasbourg ( Franee) 1989.

[Ha-Mb] R. HARTE axp M. MBEKHTA, on generalized inverses in C* —algebras,

Studia mathematica. 103 (1) (1992), T1-TT.

[He-Ro] E. HEWITT AND K.A. ROSS, Abstract harmonic analysis, VOL.1. (VOL.2.)

[Re]

[Vo]

Springer-Verlag, Berlin, 1979.(1970).

H. REITER, Classical harmonic analysis and locally compact groups. Oxford
Mathematical Monographs. 1968. '
M. VOGEL, Spectral synthesis on algebras of orthogonal polynomial series,
Math. Zeit, (1987), 99-116. '



