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Euclidean Semimodules1

E. MEHDI-NEZHAD and A. M. RAHIMI

Abstract. In this article we introduce the notion of the Euclidean semimod-
ules over Euclidean semirings. A Euclidean semimodule over a semiring R is a
natural extension of a Euclidean semiring. Any subtractive subsemimodule (=
k-subsemimodule) of a Euclidean R-semimodule is a cyclic R-semimodule. We
show that every Euclidean semimodule over a semiring has always a universal
side divisor and consequently, a cyclic semimodule with no universal side divisors
can never be Euclidean. It is shown that a multiplicatively cancellative cyclic
R-semimodule is Euclidean if and only if R is a Euclidean semiring. Moreover,
we also prove the main result that a commutative semiring R is Euclidean if
and only if every cyclic semimodule over R is Euclidean if and only if its endo-
morphism semiring is a Euclidean semiring for all cyclic R-semimodulesM . It is
shown that the homomorphic image of a Euclidean semimodule is also Euclidean
and every nonempty subset of a Euclidean semimodule has a greatest common
divisor.

Keywords: Euclidean semimodule, Euclidean semiring, subtractive ideal (= k-
ideal), subtractive subsemimodule (= k-subsemimodule), endomorphism semir-
ing.
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1 Introduction and Preliminaries

In this article we introduce the notion of the Euclidean semimodules over Euclidean semir-
ings. The notion of a Euclidean module over a commutative ring as a natural extension
of the Euclidean rings was studied in [4]. A Euclidean semimodule over a semiring R is
a natural extension of a Euclidean semiring. In this Section, we recall and review some
basic properties and definitions together with some examples and show that for every Eu-
clidean semimodule, there always exists a submultiplicative Euclidean function. In Section
2, it is shown that the homomorphic image of a Euclidean semimodule is Euclidean and
every subtractive subsemimodule of a Euclidean semimodule is cyclic. Also, we show that
a cancellative cyclic semimodule A over a semiring R is a Euclidean R-semimodule if and
only if R is a Euclidean semiring. Actually, in Section 4, we extend this result to a more
general case by relaxing the cancellative condition from the hypothesis. In Section 3, we
discuss the concept of the greatest common divisors in the semimodules and show that for
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any Euclidean semimodule A in which every cyclic subsemimodule is subtractive, then ev-
ery nonempty finite subset of A has a greatest common divisor. In Section 4, we study
the endomorphism semiring of a Euclidean semimodule and show that it is commutative.
Also, we show that every semiring R is Euclidean if and only if every cyclic R-semimodule
is Euclidean if and only if its endomorphism semiring is Euclidean. Finally, in Section 5, we
extend the notion of the universal side divisors of commutative rings to semimodules and
show that every Euclidean semimodule contains a universal side divisor which consequently
implies that a cyclic semimodule with no universal side divisors is never Euclidean.

In this paper, all semirings (unless otherwise indicated) are commutative with identity
1 6= 0 and all semimodules are unitary. That is, a semimodule A over a semiring R is
said to be unitary provided 1a = a for all a in A and the identity element 1 of R. Also,
we assume for each a in an R-semimodule A and 0 ∈ R, then 0a = 0A. A is said to be
multiplicatively cancellative if For any r and s in R; and nonzero element x in A, rx = sx
implies r = s. If B is a nonempty subset of a semimodule A over a semiring R, then RB
the subsemimodule generated by B is the set of all finite sums

∑n

i=1
ribi, where ri ∈ R and

bi ∈ B. For any nonempty subset T of R, TA is defined to be the set of all finite sums∑n

i=1
tiai, where ti ∈ T and ai ∈ A. A commutative semiring R is said to be a semidomain

(= entire) if ab = 0 with a, b ∈ R, then either a = 0 or b = 0. A semifield is a commutative
semiring in which the non-zero elements form a group under multiplication. A subset I of
a semiring R will be called an ideal if a, b ∈ I and r ∈ R implies a + b ∈ I and ra ∈ I. A
subtractive ideal (= k-ideal) I is an ideal such that if x, x + y ∈ I, then y ∈ I (so (0) is a
subtractive ideal (= k-ideal) of R). Similarly, the definition of a subtractive subsemimodule
(= k-subsemimodule) can be extended to semimodules as in the case of semirings. For a
detailed study of semirings and semimodules, reader is referred to [3]. Also, for the study of
subgroups of additive monoids, see [2].

For the sake of completeness, before stating the definition of a Euclidean R-semimodule,
we write the definition of a (left) Euclidean semiring together with some examples (coun-
terexample) exactly as given in Chapter 11 of [3] as follows.

Let N be the set of all nonnegative integers. A left Euclidean norm δ defined on a
semiring R is a function δ : R\{0} → N satisfying the following condition:

(∗) If a and b are elements of R with b 6= 0, then there exist elements q and r of R
satisfying a = qb+ r with r = 0 or δ(r) < δ(b).

A right Euclidean norm is defined similarly, except that in condition (∗) we have a =
bq + r. A semiring R is left [resp. right] Euclidean if and only if there exists a left [resp.
right] Euclidean norm defined on R. For commutative semirings, needless to say, the notions
of left and right Euclidean norm coincide.

Example 1.1. The semiring N of nonnegative integers is Euclidean if we define the Euclidean
norm δ by δ : n 7→ n or δ : n 7→ n2.

Example 1.2. Let S[t] be the semiring of polynomials in the indeterminate t over a division
semiring S and let ≡ be the congruence relation on S[t] defined by sum ait

i ≡∑
bit

i if and
only if a1t + a0 = b1t + b0. Let R be the factor semiring S[t]/ ≡. Then there exists a left
Euclidean norm δ : R\{0} → N defined by setting δ(

∑
ait

i/ ≡) = 1 if a1 6= 0 and equals to
0 if a1 = 0 but a0 6= 0.
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Example 1.3. Let R be the subsemiring of Q+ (the set of nonnegative rationals) defined by
R = {q ∈ Q+|q = 0 or q ≥ 1} and suppose that we have a left Euclidean norm δ : R\{0} →
N . Let 0 < a < b be elements of R. If δ(a) ≥ δ(b), then there would have to exist elements
q and r of R satisfying a = qb+ r, where r = 0 or δ(r) < δ(b). But a < b implies that a < qb
for all 0 6= q ∈ R and a = 0b+ r leads to the contradiction δ(a) = δ(r) < δ(b). Thus, a < b
implies that δ(a) < δ(b) for all 0 6= a, b ∈ R. Hence, R\{0} is order-isomorphic to the subset
im(δ) of N , which is impossible. Thus, no left Euclidean norm can be defined on R, and so
R is not a left Euclidean semiring.

Definition 1.4. Let N be the set of nonnegative integers and A a unitary R-semimodule
over the semiring R. A is a Euclidean R-semimodule if there is a function φ : A\{0} → N
such that if a and b are elements of A with b 6= 0, then there exist r ∈ R and c ∈ A such
that a = rb+ c with c = 0 or c 6= 0 and φ(c) < φ(b).

Example 1.5. Every Euclidean semiring R is a Euclidean R-semimodule.

Example 1.6. From the above definition, we can easily verify that every simple semimodule
over a semiring is a Euclidean semimodule. A semimodule is simple if the only subsemi-
modules it contains are (0) and itself.

Example 1.7. Clearly, if A is a Euclidean semimodule over a semiring R, then any nonzero
subtractive subsemimodule of A is a Euclidean R-semimodule. Thus, every nonzero sub-
tractive ideal of a Euclidean semiring R is a Euclidean R-semimodule.

Example 1.8. Let R[X] be the Euclidean ring of polynomials over the field of real numbers
with the Euclidean function φ(f) = deg(f) for each nonzero element f ∈ R[X]. It is clear
that the ideal I = (X2) is a Euclidean R[X]-module which is not a Euclidean ring under
the function φ since X3 = XX2 + 0 and X /∈ I.

Theorem 1.9. Let A be an R-semimodule over a semiring R. If φ is a Euclidean function
defined on A, then there exists another Euclidean function φ∗ defined on A and satisfying:

(1) φ∗(a) ≤ φ(a) for all a in A\{0}; and

(2) φ∗(b) ≤ φ∗(rb) for all b in A, and r in R satisfying rb 6= 0.

Proof. For each 0 6= a ∈ R, set φ∗(a) = min{φ(ra)|ra 6= 0}. The function φ∗ clearly
satisfies (1) and (2), so all we have to show is that it is indeed a Euclidean function on A.
Let a and b be nonzero elements of A satisfying φ∗(a) ≥ φ∗(b). Then there exists an element
s of R such that φ∗(sb) = φ(sb). Then φ(a) ≥ φ(sb) and so there exist elements q in R and
c of A such that a = qsb + c, where c = 0 or φ(c) < φ(sb). In the second case, we have
φ∗(c) ≤ φ(c) < φ(sb) = φ∗(b). Thus, φ∗ is a Euclidean function on A.

Thus, by virtue of the above result, if (A, φ) is a Euclidean R-semimodule over a semiring
R, we can, without loss of generality, assume that φ satisfies the condition that φ(b) ≤ φ(rb)
for all 0 6= b ∈ A and all r in R such that rb 6= 0. A Euclidean function satisfying this
condition is said to be submultiplicative.
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2 Some Basic Properties

In this section, we study some basic algebraic properties of the Euclidean semimodules
whereas the counterparts of some of them on the Euclidean semirings are given in Chapter
11 of [3].

Theorem 2.1. Every subtractive subsemimodule of a Euclidean semimodule over a semiring
R is a cyclic R-semimodule. Consequently, every Euclidean semimodule is cyclic since every
R-semimodule is automatically a subtractive subsemimodule of itself.

Proof. If B is a nonzero subtractive subsemimodule of a Euclidean R-semimodule A with
Euclidean function φ, choose an element b ∈ B such that φ(b) be the least integer in the
set of nonnegative integers {φ(x)|x 6= 0, x ∈ B}. If a ∈ B, then for some r ∈ R and c ∈ A,
a = rb + c with c = 0; or c 6= 0 and φ(c) < φ(b). Now, the minimality of φ(b) and the
fact that c ∈ B since B is a subtractive subsemimodule of A will imply the desired result.
Note that since A is automatically a subtractive subsemimodule of itself, thus A is a cyclic
semimodule over R.

From the above theorem, we know that every Euclidean semimodule is a cyclic semimod-
ule. So, from the fact that every simple semimodule is a Euclidean semimodule, we have
the following containment relations:

{simple semimodules} ⊆ {Euclidean semimodules} ⊆ {cyclic semimodules}.

But a Euclidean semimodule should not be a simple semimodule and there exists a cyclic
semimodule which is not Euclidean. We give the following examples.

Example 2.2. Consider the Z-module Z. Obviously, it is a Euclidean module since Z is a
Euclidean domain. But Z is not a simple module since it has a proper submodule 2Z.

Example 2.3. Consider the N -semimodule N of nonnegative integers. Obviously, it is a
Euclidean semimodule sinceN is a Euclidean semimodule. ButN is not a simple semimodule
since it has a proper subsemimodule 2N .

Example 2.4. Consider the integral domain Z[θ] = {a + bθ|a, b ∈ Z}, where θ = (1 +
(
√
−19))/2. In [1], Campoli proved that Z[θ] is a principal ideal domain which is not a

Euclidean domain. Hence, Z[θ]-module Z[θ] is a cyclic module but it is not a Euclidean
module.

Theorem 2.5. The homomorphic image (surjective homomorphism) of a Euclidean semi-
module is also a Euclidean semimodule.

Proof. Let A be a Euclidean semimodule over a semiring R with Euclidean function φ.
Suppose f : A→ B is a surjection of R-semimodules of A and B. We define φB : B\{0} → N
as follows: b 7→ min{φ(a)|a ∈ f−1(b)}. Note that for any 0 6= b ∈ B, f−1(b) does not
contain 0A since f(0a) = f(0R0̇A) = 0Rf(0A) = 0B by the definition of a semimodule.
Clearly, φB is well defined since f is a surjection. For all b1 in B and b2 ( 6= 0) in B, we
can choose a1, a2 ∈ A such that f(a1) = b1, f(a2) = b2 and φB(b2) = φ(a2). Obviously,
a2 6= 0 since b2 6= 0. Since A is a Euclidean semimodule, there exists an element r in R
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and a3 in A such that a1 = ra2 + a3, where a3 = 0; or a3 6= 0 and φ(a3) < φ(a2). So
f(a1) = rf(a2) + f(a3), that is, b1 = rb2 + b3 (here we denote f(a3) = b3). If b3 6= 0,
then (φB(b3) = min{φ(a)|f(a) = b3} ≤ φ(a3) < φ(a2) = φB(b2), that is, φB(b3) < φB(b2).
Hence, φB is the desired Euclidean function for B and B is a Euclidean R-semimodule.

But the converse of the above result is not true in general. For example, consider the
Z-module short exact sequence

0→ Z
ι→ Z ⊕ Z2

π→ Z2 → 0.

Obviously, Z is a Euclidean Z-module since it is a Euclidean domain. Also, Z2 is Euclidean
as a homomorphic image of Z. But Z ⊕ Z2 is not Euclidean since it is not cyclic. From
this example, we can conclude that the class of Euclidean semimodules under the action of
direct sum is not closed.

Remark 2.6. By using submultiplicative property of a Euclidean function, it is not difficult
to show that for any c ∈ A and any generator a of A, we have always φ(a) ≤ φ(c). Moreover,
for any generator a of a Euclidean semimodule A over a semiring R with Euclidean function
φ, φ(b) = φ(a) if and only if b is a generator of A. Also, for a Euclidean semiring R with
Euclidean norm (function) δ, in Proposition 11.11 [3], it is shown that δ(1R) ≤ δ(r) for each
r ∈ R. Moreover, it is shown that δ(r) = δ(1R) if and only if r is a unit in R. Recall that
for any nonzero element r in a Euclidean ring R with Euclidean function φ, φ(1R) ≤ φ(r),
and φ(r) = φ(1R) if and only if r is a unit in R.

Theorem 2.7. A cancellative cyclic semimodule A over a semiring R is a Euclidean R-
semimodule if and only if R is a Euclidean semiring.

Proof. For the sufficiency, let R be a Euclidean semiring with Euclidean function φ. Let
A = Rx be a cancellative cyclic semimodule over R. Define ψ : A\{0} → N as ψ(a) =
ψ(rx) = φ(r) for each nonzero a in A, where a = rx for some r in R. The proof can be
followed directly from the definition if we show that ψ is a well-defined function. Suppose,
y is a generator of A. Thus, x = ry = rsx, for some r, s ∈ R, implies 1R = rs which
makes ψ(y) = ψ(sx) = φ(s) = φ(1R) = ψ(x). Now, suppose a = rx = sy for some
nonzero r and s in R and y a generator of A. Hence, a = rx = sy = stx, for some t ∈ R,
implies r = st which makes ψ(a) = ψ(rx) = φ(r) ≥ φ(s) = ψ(sy). Again, by a similar
argument, ψ(sy) = φ(s) ≥ φ(r) = ψ(rx). For the necessary part, suppose A = Rx and
define ψ : R\{0} → N as ψ(r) = φ(rx) for each nonzero r in R. Next, we show that ψ is a
well-defined function on R\{0} and the rest of the proof which can be followed directly from
the definition is left to the reader. Suppose, ψ(r) = φ(rx) and ψ(r) = φ(ry) for an arbitrary
generator y of A. Since A is a Euclidean R-semimodule, φ(rx) = φ(rsy) = φ(sry) ≥ φ(ry)
and similarly φ(ry) = φ(rtx) = φ(trx) ≥ φ(rx). Consequently, φ(rx) = φ(ry).

Remark 2.8. It is not difficult to show that in a nonzero cancellative cyclic R-semimodule
A = Rx, rx is a generator of A if and only if r is a unit in R. Note that for the sufficient
part, A need not be a cancellative R-semimodule.
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3 The Greatest Common Divisors in the Euclidean Se-

mimodules

As a generalization of the divisors in a semiring, we define divisors in the semimodules.
Let A be a semimodule over a semiring R. We say an element b of A is a divisor of a
in A whenever a = rb for some r in R. If a is an element of a semimodule A over a
semiring R, then we denote by D(a) the set of all divisors of a in A. That is to say,
D(a) = {b ∈ A|a ∈ Rb} = {b ∈ A|Ra ⊆ Rb}. Since b in D(b) for all b in A, it is clearly true
that b in D(a) if and only if D(b) ⊆ D(a).

If B is a nonempty subset of a semimodule A over a semiring R, then the set of common
divisors of B is CD(B) = ∩{D(a)|a ∈ B} = {b ∈ A|RB ⊆ Rb}. An element b in CD(B) is
a greatest common divisor of B if and only if CD(B) = D(b).

Theorem 3.1. If B is a nonempty subset of a semimodule A over a semiring R, then an
element b of A is a greatest common divisor of B if and only if the following conditions are
satisfied:

(1) RB ⊆ Rb;

(2) if c ∈ A satisfies RB ⊆ Rc, then Rb ⊆ Rc.

Proof. Assume that b is a greatest common divisor of B. Then b ∈ CD(B) and so b ∈ D(a)
for each a in B. Thus, Ra ⊆ Rb for each a in B, implying that RB ⊆ Rb. Moreover, if
RB ⊆ Rc for some element c of A, then c ∈ CD(B) = D(b) and so Rb ⊆ Rc. Conversely,
assume conditions (1) and (2) are satisfied. By (1), b ∈ CD(B) and so D(b) ⊆ CD(B).
By (2), if c ∈ CD(B), then RB ⊆ Rc and so Rb ⊆ Rc. Hence, c ∈ D(b), proving that
CD(B) ⊆ D(b) and thus yielding equality.

Corollary 3.2. If every subtractive subsemimodule of a semimodule A over a semiring R
is cyclic, then every nonempty subset of A has a greatest common divisor.

Proof. Let B be a nonempty subset of A. Then RB = R or RB is a subsemimodule of A.
Hence, by hypothesis, there exists an element b of A satisfying RB = Rb. By Theorem 3.1,
b is a greatest common divisor of B.

Theorem 3.3. Let a, b, and c be elements of a semimodule A over a semiring R. If d
is a greatest common divisor of a, b and e is a greatest common divisor of c, d, then e is a
greatest common divisor of a, b, c.

Proof. By definition, D(e) = D(d) ∩D(c) = D(a) ∩D(b) ∩D(c) = CD(a, b, c).

If a and b are elements of a semimodule A over a semiring R, then clearly CD(a, b) ⊆
CD(a+ b, b). We now investigate the conditions for having equality.

Theorem 3.4. The following conditions on a semimodule A over a semiring R are equiv-
alent:

(1) CD(a, b) = CD(a+ b, b) for all a, b ∈ A;
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(2) every cyclic subsemimodule of A is subtractive.

Proof. Assume (1) holds and let Rd be a cyclic subsemimodule of A. If a and a+ b belong
to Rd, then d ∈ CD(a+ b, a) = CD(a, b) and so b ∈ Rd. Therefore, Rd is a subtractive
subsemimodule. Conversely, assume (2) is true and let a, b ∈ A. If d ∈ CD(a+ b, b), then
a+ b and b both belong to Rd and so, by (2), a ∈ Rd. Therefore, d ∈ CD(a, b).

Theorem 3.5. The following conditions on a Euclidean semimodule A over a semiring R
are equivalent:

(1) every subsemimodule of A is cyclic and subtractive;

(2) there exists a Euclidean function φ defined on A satisfying the condition that if a =
qb+ c for some c in A\{0} and φ(c) < φ(b), then a /∈ Rb.

Proof. (1) ⇒ (2): By Theorem 1.9, we know that there exists a Euclidean function φ on
A satisfying the condition that φ(a) ≤ φ(ra) for all r in R and a in A\{0}. Assume that
a = qb+ c for some c in A\{0} and φ(c) < φ(b). If a ∈ Rb, then by (1), we must have c = rb
for some r in R and so φ(c) ≥ φ(b), which is a contradiction. Thus, a /∈ Rb.

(2)⇒ (1): Assume that a, b ∈ A and that t ∈ CD(a+ b, b). Then we can write a+b = rt
and b = st for elements r and s of R. By the choice of φ, we know that φ(a) ≥ φ(t) and so
either a = qtora = qt+ c for some 0 6= c ∈ A satisfying φ(c) < φ(t). But in the latter case,
we have rt = (s+ q)t+ c, which again contradicts the stated condition. Thus, we must have
a = qt and so t ∈ D(a). Since t ∈ D(b) by the choice of t, we have t ∈ CD(a, b). Thus, A is a
cyclic semimodule in which every cyclic subsemimodule is subtractive by Theorem 3.4.

Theorem 3.6. If A is a Euclidean semimodule over a semiring R in which every cyclic
subsemimodule is subtractive, then any nonempty finite subset B of A has a greatest common
divisor.

Proof. By Theorem 3.3, it suffices to consider the case of B = {a, b}. If a = b = 0, then 0
is a greatest common divisor of {a, b} and we are done. Hence, without loss of generality, we
can assume that b 6= 0. Since every cyclic subsemimodule of A is subtractive, we know by
Theorem 3.5 that there exists a Euclidean function φ defined on A satisfying the condition
that if a = qb + c for some c in A\{0} satisfying φ(c) < φ(b), then a /∈ Rb. By repeated
applications of φ, we can find elements q1, . . . , qn+1 of R and c1, . . . , cn of A\{0} such that
a = q1b+c1, b = q2c1+c2, . . . , cn−2 = qncn−1+cn, cn−1 = qn+1cn and φ(b) > φ(c1) > · · · >
φ(cn). (The process of selecting the qi’s and ci’s must indeed terminate after finitely-many
steps since there are no infinite decreasing sequences of elements of N .) Working backwards,
we then see that cn−2 = [qnqn+1 + 1]cn, cn−3 = [qn−1qnqn+1 + qn−1 + qn + 1]cn, etc. until
we establish that cn ∈ CD({a, b}). Conversely, assume that d ∈ CD({a, b}). By Theorem
3.5,, we see that d ∈ D(c1), d ∈ D(c2), · · · , d ∈ D(cn) and so D(cn) = CD({a, b}). Thus, cn
is a greatest common divisor of {a, b}.

Recall that a module M over a ring is said to be a uniform module if the intersection
of two nonzero submodules of M is again nonzero. We now extend this definition to the
uniform semimodules over a semiring. Since the intersection of subtractive subsemimodules
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of a semimodule over a semiring is subtractive, we say a semimodule A is said to be uniform
whenever the intersection of any two nonzero subtractive subsemimodules of A is a nonzero
subsemimodule of A. We next state the following theorem For a torsion-free Euclidean
R-semimodule.

Theorem 3.7. Let A be a torsion-free Euclidean semimodule over a semiring R. Suppose
each greatest common divisor of any pair of elements a and b of A is a linear combination
of a and b. That is, gcd(a, b) = r1a + r2b for some r1 and r2 in R. Then A is a uniform
semimodule.

Proof. Suppose A1 and A2 are two nonzero subtractive subsemimodules of A, both of
A1 and A2 are cyclic since A is Euclidean. We may assume that A1 = Ra1 (a1 6= 0)
and A2 = Ra2 (a2 6= 0). By hypothesis, we know that there exist r1, r2 ∈ R such that
gcd(a1, a2) = r1a1 + r2a2 (here we denote a0 = gcd(a1, a2) = r1a1 + r2a2). Because a0
divides a1, there exists r3 ∈ R such that a1 = r3a0. Hence, a1 = r3(r1a1 + r2a2) and
a1 = r3r1a1 + r3r2a2. Since A1 is subtractive, then r3r2a2 ∈ A1. If r3r2a2 6= 0, then
r3r2a2 ∈ Ra1 ∩ Ra2 and thus Ra1 ∩ Ra2 6= 0. If r3r2a2 = 0. We know r3 6= 0 since a1 6= 0
and so r2a2 = 0 since A is torsion-free. Thus, a0 = r1a1. While a0 also divides a2, there
exists r4 ∈ R such that a2 = r4a0 = r4r1a1. Thus, Ra1 ∩ Ra2 6= 0 since a2 ∈ Ra1 ∩ Ra2.
Hence, A is a uniform semimodule.

In the above theorem, the condition that A is ”torsion-free” can not be removed. Oth-
erwise, the theorem may be false.

Example 3.8. Consider the Z-module Z6. Obviously, Z6 is Euclidean since it is a homomor-
phic image of Z. But it is not a uniform module since A1 = {0, 2, 4} and A2 = {0, 3} are
two nonzero submodules such that A1 ∩A2 = 0.

4 The Endomorphism Semiring of a Euclidean Semi-

module

In this paper, we will write endomorphisms of left semimodules on the right side of the
elements of the semimodule and endomorphisms of right semimodules on the left. Under
this notation, (a)(fg) = g(f(a)), where f, g ∈ End(RA). We define similar to the definition
of a balanced bimodule that a bisemimodule RAS is a balanced bisemimodule if ”left and right
multiplications” λ and ρ are both surjective, where λ : R→ End(AS) and ρ : S → End(RA)
such that for r in R, x in A and s in S, λ(r) : x 7→ rx and ρ(s) : x 7→ xs. To prove the main
result of this section, we need the following lemma.

Lemma 4.1. Let R be a commutative semiring and A a cyclic R-semimodule. Then

(1) RAR is a balanced bisemimodule;

(2) End(RA) is a commutative semiring.

Proof. (1) Suppose A = Ra0 = a0R, where a0 ∈ A. Given λ : R → End(AR) and
ρ : R→ End(RA) For any f ∈ End(AR), there exists an r ∈ R such that f(a0) = a0r. Then
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for any a0r1 ∈ A, f(a0r1) = f(a0)r1 = (a0r)r1 = (ra0)r1 = r(a0r1). Hence, there exists an
r in R such that λ(r) = f , that is, λ is an epimorphism. Similarly, ρ is also an epimorphism.
Thus, RMR is a balanced bisemimodule.

(2) Suppose f1, f2 ∈ End(RA), then there exist r1, r2 ∈ R such that ρ(r1) = f1 and
ρ(r2) = f2 since RAR is a balanced bisemimodule by (1). For all a in A, (a)f1f2 = (ar1)f2 =
(ar1)r2 = (ar2)r1 = (a)f2f1. Hence, f1f2 = f2f1 and End(RA) is commutative.

We now can write the following corollary since every Euclidean semimodule is cyclic.

Corollary 4.2. Suppose R is a commutative semiring and A is a Euclidean semimodule
over R. Then RAR is a balanced bisemimodule and End(RA) is a commutative semiring.

We now can prove the main result of this section as follows.

Theorem 4.3. For a commutative semiring R, the following statements are equivalent:

(1) R is a Euclidean semiring;

(2) every cyclic R-semimodule is Euclidean;

(3) for every cyclic R-semimodule A, End(RA) is a Euclidean semiring;

(4) for every cyclic R-semimodule A, every cyclic End(RA)-semimodule is Euclidean.

Proof. (1) ⇒ (2): If R is a Euclidean semiring, then R as an R-semimodule over itself
is a Euclidean semimodule. Since (similar to the case of cyclic modules) every cyclic R-
semimodule A = Rx is a homomorphic image of R, given by r 7→ rx, then by applying
Theorem 2.5 that the homomorphic image of a Euclidean semimodule is Euclidean, we can
conclude that every cyclic R-semimodule is Euclidean.

(2) ⇒ (1): It is obvious since R is a cyclic R-semimodule over itself.

(2)⇒ (3): We prove that End(RA) is a Euclidean semiring. Let A be a cyclic semimodule,
then by assumption A is a Euclidean semimodule. Suppose A = Ra0 = a0R (a0 6= 0) and
φ is its associated Euclidean function. If 0 6= f ∈ End(RA), then f(a0) 6= 0. For if
f(a0) = 0, then f(Ra0) = f(A) = 0 and f = 0 which is a contradiction. So we may
define Φ : End(RA)\{0} → N as follows: f 7→ φ(f(a0)). For all f1 ∈ End(RA) and
0 6= f2 ∈ End(RA), then f2(a0) 6= 0. Since A is a Euclidean semimodule, there exist r ∈ R
and a3 ∈ A such that f1(a0) = rf2(a0) + a3, where a3 = 0 or φ(a3) < φ(f2(a0)). Suppose
a3 = r′a0 = a0r

′. We now define f3 : A → A as a 7→ ar, and f4 : A → A as a 7→ ar′. We
can easily verify that f3, f4 ∈ End(RA). Suppose f2(a0) = r1a0, then (a0)f2f3 = (r1a0)f3 =
r1(a0f3) = r1(a0r) = (r1a0)r = rf2(a0). So (a0)f1 = (a0)f2f3 + (a0)f4 = (a0)(f2f3 + f4).
Since A = Ra0 = a0R, then f1 = f2f3 + f4. If a3 = 0, then f4 = 0. If a3 6= 0, then
f4 6= 0 and Φ(f4) = φ(f4(a0)) = φ(a3) < φ(f2(a0)) = Φ(f2). Hence, Φ is the right Euclidean
function (norm) for End(RA) and thus End(RA) is a right Euclidean semiring. But End(RA)
is commutative by Lemma 4.1, so End(RA) is a Euclidean semiring.

(3)⇒ (2): Let A be a cyclic R-semimodule and End(RA) a Euclidean semiring. Suppose
Φ is the associated Euclidean function of End(RA) and A = Ra0 = a0R, where a0 ∈ A.
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If 0 6= a ∈ A, let a = ra0 = a0r. We can define an f : A → A as a 7→ ar such that
f(a0) = a0r = a. So for all 0 6= a ∈ A, the set {Φ(f)|(f(a0) = a} is a nonempty subset of N .
Now we can define φ : A\{0} → N as follows: a 7→ min{Φ(f)|f(a0) = a}. Obviously, this
function is well defined. We shall prove that φ is the appropriate Euclidean function for A.
For all a1 ∈ A and 0 6= a2 ∈ A, we can choose an f2 in End(RA) such that f2(a0) = a2 and
φ(a2) = Φ(f2). Obviously, f2 6= 0. If a1 = 0, then 0 = 0a2+0. If a1 6= 0, then we can choose
an f1 in End(RA) such that f1(a0) = a1. Since End(RA) is a Euclidean semiring, then there
exist f3, and f4 in End(RA) such that f1 = f2f3 + f4, where f4 = 0 or Φ(f4) < Φ(f2). So
(a0)f1 = (a0)(f2f3 + f4) = (a0)f2f3 + (a0)f4 = (a2)f3 + a3 (here, we denote f4(a0) = a3).
That is, a1 = f3(a2) + a3. According to Lemma 4.1, we know that RAR is a balanced
bisemimodule, thus there exists r in R such that f3(a2) = a2r = ra2. So a1 = ra2 + a3. If
f4 = 0, then a3 = f4(a0) = 0. If f4 6= 0, then φ(a3) = min{Φ(f)|f(a0) = a3} ≤ Φ(f4) <
Φ(f2) = φ(a2). That is, φ(a3) < φ(a2). Hence, φ is the appropriate Euclidean function for
A and consequently, A is a Euclidean semimodule.

(3) ⇔ (4): It is a special case of (1) ⇔ (2) since End(RA) is commutative for any cyclic
R-semimodule A.

From the above theorem, we can conclude the following corollary.

Corollary 4.4. Suppose R is a commutative semiring and A is a Euclidean semimodule
over R, then End(RA) is a Euclidean semiring.

5 The Universal Side Divisors of Cyclic Semimodules

In [6], it is shown that an integral domain with no universal side divisors can not be Eu-
clidean. Also, in [4], the concept of the side divisors from commutative rings is extended
to the Euclidean modules over a commutative ring R and shown that a torsion-free cyclic
module with no universal side divisors is not Euclidean. In this section, we extend the notion
of the universal side divisors from an integral domain to a semiring and semimodule over
a commutative semiring. We show that every Euclidean semimodule has a universal side
divisor. For a detailed study of the ”side divisors” and the ”universal side divisors” in a
commutative ring, reader is referred to [5].

Definition 5.1. Suppose A is a cyclic semimodule over a semiring R. Let G0(A) (resp.,
U0(R)) be the set of all generators (resp., units) of A (resp., R) together with zero. Also,
suppose that A\G0(A) (resp., R\U0(R)) is not an empty set. An element a in A\G0(A)
(resp., R\U0(R)) is said to be a side divisor of an element b in A (resp., R) whenever b = qa+c
for some q in R and c in G0(A) (resp., U0(R)). We shall call an element u ∈ A\G0(A) (resp.,
R\U0(R)) a universal side divisor in A (resp., R) whenever u is a side divisor of each element
x ∈ A (resp., R). That is, a universal side divisor u of A (resp., R) is an element of A\G0(A)
(resp., R\U0(R)) such that for every x in A (resp., R), then x = qu+ c for some elements q
in R and c in G0(A) (resp., U0(R)).

Theorem 5.2. Every Euclidean semimodule A (resp., semiring R) over the semiring R has
a universal side divisor provided that A\G0(A) (resp., R\U0(R)) is nonempty.



EUCLIDEAN SEMIMODULES 33

Proof. Let A be a Euclidean semimodule over a semiring R with Euclidean function φ. Let
u be in A\G0(A) with minimal value. Then for any x in A, there exist q in R and c in A
such that x = qu + c, where c = 0 or φ(c) < φ(u). Hence, minimality of φ(u) implies that
c is an element of G0(A). Thus, u is a universal side divisor in A by definition. The result
for the semiring as a special case is clearly true since every semiring is a semimodule over
itself.

Corollary 5.3. A cyclic semimodule A (over a semiring) with A 6= G0(A) (resp., semiring
R with R 6= U0(R)) is not Euclidean provided that it has no universal side divisors.

Proof. See the above theorem.

Remark 5.4. It is not difficult to show that in a multiplicatively cancellative cyclic R-
semimodule A = Rx over a semiring R, rx is a generator of A if and only if r is a unit
in R. Note that for the sufficient part, A need not be a multiplicatively cancellative R-
semimodule. Thus, a = rx is in A\G0(A) if and only if r is in R\U0(R), or equivalently,
a = rx ∈ G0(A) if and only if r ∈ U0(R), where U0(R) is the set of all units in R together
with zero. Consequently, by virtue of the next theorem, A = Rx has no universal side
divisors if and only if R has no universal side divisors.

Theorem 5.5. For a cyclic semimodule A = Rx over a semiring R, if r is a side divisor of
s in R, then rx is a side divisor of sx in A. Conversely, for a multiplicatively cancellative
cyclic R-semimodule A = Rx if a = rx is a side divisor of b = sx in A, then r is a side
divisor of s in R.

Proof. The proof follows directly from the definition and the first part of the above remark.

Corollary 5.6. A multiplicatively cancellative cyclic semimodule A over a semiring R has
no universal side divisors if and only if R contains no universal side divisors.
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