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DESCENT IN RATIONAL HOMOTOPY THEORY

John Oprea

Introduction

Although the phenomenon of descent is quite well known in number theory
or algebraic geometry, it is only recently that it has found a place in the
realm of algebraic topology. If two non—isomorphic algebraic objects defined
over a field become isomorphic under an extension of the field (and the con-
comitant extension of scalars), then this situation is said to be an example
of descent. For example, it is a familiar fact that there exist non-
equivalent quadratic forms defined om a rational vector space which become
equivalent when considered on the real vector space extension. With the
advent of rational and real homotopy theory in the 1970's, the question of
descent assumed a topological aspect. Very early it was discovered that the
quadratic form example could be used to construct two spaces with the
property that their rational homotopy types are distinct, but their real
homotopy types are the same. Also, it was shown that certain properties of
spaces exhibit no descent whatsoever. In particular, a space is Q-formal
(i.e. its rational homotopy type is determined by its rational cohomology
algebra) if and only if it is k—-formal for an extension k (i.e. its
k-homotopy type is determined by its k—-algebra). See [S], [NM], or [HS] for
example.

The question of descent for homotopy classes of maps was first brought

to my attention by Steve Halperin. Specifically, do there exist two
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rationally non-homotopic maps which become homotopic when considered over the
reals? Although the answer is not known in general, it will be demonstrated
here that this situation cannot occur if the maps are rational equivalences.
Since the proof of this result depends on the algebraic group structure of
the automorphisms of the minimal model, we first review the fundamentals of
rational homotopy theory. To make this approach concrete, we then explicitly
construct (via circle actions) the distinct rational homotopy types of two
12-manifolds which coalesce to a single real homotopy type.

In the following, all spaces are assumed to be rational and simply
connected with finite ratiomal betti numbers. Therefore, all cohomology,
homology and homotopy shall be understood to have rational coefficients
without explicit denotation. When considering objects over the real numbers,

we shall write either the subscript or the tensor product ®R.

R
I would like to thank Dan Burghelea and Reinhard Schultz for helpful

conversations in connection with this work.

1. Minimal Model Theory

To any space X there is associated a "minimal" differential graded
algebra (DGA) model M(X) which describes the homotopy type of X. (Recall
that all spaces are assumed to be rational!) The model M(X) has a very
special structure which makes it amenable to both calculation and
manipulation. As a graded algebra, M(X) = L(V), where L(V) denotes the
commutative graded algebra freely generated by the graded vector space V.
That is, L(V) is the temsor product of a polynomial algebra on even
dimensional basis elements of V and an exterior algebra on odd dimensional
basis elements of V. Furthermore, M(X) is provided with a differential

o+ +
d, a graded derivation of degree 1 satisfying d2 =0 and d(M )cM - M.
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This last property is called "decomposability of the differential” and is
useful in inductive proofs and constructiomns.

We may consider various algebraic objects associated to M(X) 1like its
cohomology H*(M(X)) or its space of indecomposables QM(X) =
M(X)+/M(X)+ -M(X)+} One of the things we mean when we say that  M(X)
describes the homotopy type of X is that there exist natural isomorphisms,
HE(M(X)) = H*(X), QM(X) = Hom( X, Q). (Here, 7X denotes the LB
homotopy group of X.) 1In fact, the construction of a minimal model for a
space X mimics the construction of the Postnikov tower for X, so it is not
surprising that the algebraic entity M(X) contains all homotopy information
about X. Furthermore, by reversing the process, for any given minimal DGA
M we may construct a space which reflects the appropriate "homotopical"
structure of M. Indeed, the set of (rational) homotopy types is in
one—to—one correspondence with the isomorphism classes of minimal DGA's.

If f: X > Y is a map of spaces, then there is an induced map
F: M(Y) > M(X). Indeed, there is a DGA homotopy theory which provides a
correspondence between homotopy of spaces and homotopy of differential graded
algebras. We shall not present this here because we make no use of the
explicit definition. For all of the material so far the reader is referred
to [GM] for example.

It is also possible to treat fibrations from the minimal model point of view
(see [H1] for example). A fibration F+E~+B is modeled by an extension of DGA's

L), d) > LV @ W), D) » (LW, dy)
where M(B) = (L(V), dj), M(F) = (L(W),d;) and HX(L(V @ W), D) = H*(E).
Although the middle DGA will not be minimal in general, the "twisted"

differential D 1is required to satisfy the following properties:
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1. D2

it
o
.

2o Dv = d_v.
3. Dw = de + Tw, where T 1is a degree 1 derivation
+ % i
M(F) > M(F) ® M(B)", (M(B)" = + M (B)).
i>0

In particular, the dual to the usual homotopy sequence of a fibration may be
obtained as the long exact sequence associated to the extension's short exact
sequence of cochain complexes of indecomposables.

To end this section on fundamentals we recall the work of Sullivan [S].

If M is a minimal DGA which is finitely generated as an algebra, then the

group of DGA automorphisms Aut(M) has the structure of a Q-algebraic matrix
group. The group of homotopy classes of automorphisms h = Aut(M) has such
a structure as well and the projection Aut(M) ~ h - Aut(M) 1is a morphism of
algebraic groups. The kernmel of this morphism is denoted by U and consists
of all automorphisms which are homotopic to the identity. Sullivan showed
that every element of U has the form exp(di + id), where i € Der_l(M),
the degree (-1) derivations of M (also see [H1]). In this way it can be
seen that U 1is a unipotent algebraic group with nilpotent Lie algebra
L(U) = {di + id|i € Der T(M)}

exp
and that there are inverse bijections L(U) I U.

log
Remark

A1l that we have said for DGA's over @ holds for DGA's over R as

well. To pass from (Q to R we merely tensor with TR over Q. In

particular, if X is a space, then its real homotopy type is described by

forming M(X) x R. Furthermore, if X 1is a smooth manifold, then its real
homotopy type may be recovered directly from its DeRham algebra of smooth

forms Q(X).
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2. An Example of Descent

In this section we will construct two distinct rational homotopy types
(of 12-manifolds) which have the same real homotopy type. Before we can
accomplish our construction, we must recall several basic results from the
theory of transformation groups as well as the rational homotopy theory
approach to compact group actiomns.

If a group G acts on a space X, then there is an associated bundle
(called the Borel fibration),

X -+ XG - BG
where XG 1is the orbit space of X x EG wunder the "diagonal" action. Here,
EG denotes the contractible free G-space and BG = EG/G. If X is a finite
CW complex and G acts almost freely (i.e. each isotropy group is finite),
then the Vietoris-Begle Theorem implies that,
XG n X/G and dimH*(XG) < «.

In this sense, the total gpace of the Borel fibration is the homotopical
version of the orbit space of a group actiom.

In the following we shall restrict to the situation G = Sl, the circle

group. The classifying space is given by BSl = CP(«), infinite complex
projective space. It is well known that S1 acts almost freely on a space
X if and only if the fixed set F(Sl, X) 1is empty. Therefore, by using the

following condition it becomes quite easy to check whether an action is

almost free.

Fixed Point Condition (see [Hsi]). Suppose st acts on a finite CW complex.

Then F(Sl, X) # @ if and only if H*(BSl) + H*(XSl) is injective.

Recall that H*(BSl) = L(e), a polynomial algebra on the degree 2

generator e. Essentially, there is only one way to construct a minimal
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model for a space having such a cohomology algebra; M(BSl) = (L(e), d=0).

This observation leads to the following structure imposed on the model
of the fibration X - XSl - BSl;

(L(e), d=0) » (L(e @ W), D) » (L(W), d),

with De = 0 and Dw = dw + £ where & is in the ideal generated by e.
The reader should consult [AH] or [0] for details and examples. Also, we
note here that an extension of the above form may be realized by an almost
free circle action on a space if dimH*(L(e @ W), D <« (see [0]).

Now we are in a position to construct our examples in an elementary
fashion. Our construction is algebraic, but the statement above shows that we
are essentially defining circle actions on the product of spheres 84 X Sg.

Form the extension (| | denotes degree, a € Q),

L(e) - (L(e,x,y,z), Da) + (L(x,y,z), d)

with ,el =2 Dae =0 = Dax ]xl =4, lyl =7, lzl =9
de =0 Day = x2 + ae4 dx =0 dy = x2
Dz = e5 dz = 0.
a

It can easily be verified that Da satisfies the conditions described
earlier. Also, note that

(L(x,y), dx = 0, dy = x°) and (L(z), d = 0)
are the minimal models of S4 and S9 respectively, so the "fibre" models

S4 X 89.

Remark

(i) It can be computed directly that dimH*(L(e,x,y,z), Da) <@ In
fact, because Daz = es, we see that H*(L(e)) - H*(L(e,x,y,z)) 1is not
injective, so this corresponds to the situation of an almost free circle

action by the Fixed Point Condition.
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(ii) Because the cohomology of (L(e,x,y,z), Da) is finite dimensional
and there are a finite number of generators, Theorem 3 of [H2] implies that
H*(L(e,x,y,2), Da) satisfies Poincaré duality and has formal dimension 12.

(iii) The cohomology in dimension 6 has basis {[xel, [e3]} and the
Poincaré quadratic form is equivalent over Q to [ é _2 J. Hence, the form
is a difference of squares with signature zero. By Theorem 13.2 of [S] we
see that (L(e,x,y,z), Da) is a minimal model for a 12-dimensional manifold.

In the following, for concreteness, we will consider only the cases

a=1,2. Let Dl =D, D2 =D, M= (L(e,x,y,2), D) and N = (L(e,x,y,2), D).

Thoerem.
(i) M X R=N % R.
(ii) M Z N.

Proof.

(i) Define 6: M % R >N x R by, fe 6x = (1/V/2)x,

]
o

6y =(1/2)y and gz = z. Note that,
6Dy = 6(x2 + e4)
= [6(x)1% + [0(e)1?
1.2 4

==X +e

¥

1
gl N N
= ol

(2 y)

D Oy.

It is obvious that 6D = D@ for the other generators of M X, R; thus,
because M x; R is freely generated by these generators, the relation holds
globally. The same argument shows that © is a global isomorphism because
it is so omn the vector spaces of indecomposables. Hence M 'x! R and

N /xi R are isomorphic DGA's.
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(ii) We can try to define an isomorphism over Q in the following way:

2
(MO,D, € 5 TaUEQ) pe = de, 60X =¢gx tpe , By = eV, 6z = 1tz + pey.

This ] is the most general possible. As before, the existence of
¢} hinges on whether or not the relation Do=0D is satisfied. We have,
6Dy = 02x2 + 20pxe2 + (p2 + )\4)e4
Bey = sxz + Zeea.
This imposes the following conditions on the coefficients: e = 02,
02 + %4 = 2¢ and 200 = 0. The last condition provides two cases:

1. o0 = 0. By the first condition, this implies € = 0. But then the
definition of 6 implies 6y = 0 which shows 6 is not an isomorphism.

2.4 p = 0. The second condition shows that A4 = 2e. By the first

condition, x4 = 202 or the equivalent 2 = (Az/o)z. But A, e€ Q, so this
would say that 2 is a rational square. This contradiction rules out the
second case.

Therefore, since neither of the two cases can occur, it is impossible to

find an isomorphism of M onto N (as DGA's). QED

Corollary.

Let X and Y denote 12-manifolds which have minimal models M and N
respectively. Then X and Y have distinct rational homotopy types, but
their real homotopy types are the same. In particular, the DeRham complexes,

Q(X) and Q(Y), carry the same homotopical imformation.

Remark.

In Halperin's terminology, M and N are elliptic spaces with zero
homotopy euler characteristic (i.e. the same number of odd and even
generators). Hence by [H2], M and N are formal DGA's. Therefore, the

spaces X and Y are formal (in our earlier sense) as well. This says
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that, while the quality of formality itself exhibits no descent, formal

spaces possess a rich descent theory.

3. Non-Existence of Descent for Rational Equivalences

Although, as we have seen, descent occurs for spaces, it is mnot at all
clear that the same can be said for maps between spaces. By the categorical
equivalence mentioned earlier it is sufficient to study the following
question: Do there exist DGA maps of minimal DGA's f,g: M+ N such that
f and g are not (DGA)-homotopic, but fR and gy are (DGA)-homotopic?

(Here, f and are the natural extensions of i and g to

R &
M x, R+ N x) R.) We shall demonstrate, in this section, that this
situation canmot occur if f and g are automorphisms of the minimal DGA

M. We state this result as,

Theorem A.
Let M be a minimal DGA and suppose fse Aut(M). Then f is
homotopic to g if and only if fR is homotopic to

&g

Because f,g e Aut(M), if f o g, then fg-l n 1. Hence, Theorem A is

equivalent to,

Theorem A'.
The automorphism f is homotopic to the identity if and only if fR is

homotopic to the identity.

Lemma.

It is sufficent to assume M 1is finitely generated.
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By ([DR]; Lemma 2.4), f v 1 if and only if for all u, fn_g 1n where
the subscript n denotes the restriction of the maps to M(n), the sub-DGA of
M  generated by elements of degree < n. Therefore, if we show Theorem A'
holds for every finitely generated M, then it will hold for each fn and

consequently for f. QED

Proof of Theorem A'.

By the Lemma, we may assume without loss of generality that M is
finitely generated. Hence, we may apply the results of Sullivan described in
§1. (We note here that, when we refer to the algebraic groups below, we are
actually referring to either the rational or real points of an appropriate
algebraic group over the complex numbers.)

By extension of scalars, there is an injection of algebraic groups

¢

Aut(M) + Aut(M x;  R) which respects homotopy. Hence, we obtain the

following commutative diagram of exact sequences,

U Aut(M) e~ h = Aut(M)
v b
|
L g 6
v N’
Vo Aut(M X R) —— 5, h - Aut(M X R)
where V  consists of the automorphisms of M X R homotopic to the

identity. In order to prove the theorem, we must show only that 6 is
injective. This is equivalent to showing that, if #(f) e V, then f e U.
We will prove this statement by using the structure of the nilpotent Lie

algebras L(U) and L(V). Recall

fl

L(U) =1{[d, il]ie Der'l(M)}

L(V)

{1d, il]ie Der t(M % R))

where [d, i] = di + id.
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Lemma .

=

As vector spaces, Der_l(M) X R

e

Der T(M ‘% R).

Proof.
A derivation is determined by its effect on algebra generators. Let
{xa} be a finite set of algebra generators and {yB} a vector space basis
for M. Define,
I= {iaB € Der_l(M)|iaB(xu) =Yg iaB(xY) = 0}.
I forms a basis for the vector space of derivations. Because coefficients
play no role here, we see that

dim Der_l(M) = dinHRDer_l(M ® R).

Q
Hence, dimmﬂDer_l(M)'if R) = dimmﬂDerwl(M %, R)) and the injection
Der—l(M) xi R > Der_l(M X. R) defined by iaB x;p 1= iuB is an
isomorphism.
QED Lemma.
Now, consider the commutative diagram,
exp
L) - U
///’ Y ) log o
| e
& { exp 2 ~
L(U) x. R s UR ‘ ‘
| AN |
! i
& axp \ !
L) T — Ty
) log
where U is the real unipotent group associated to the real nilpotent Lie

R

algebra L(U) ix; R via the exponential map and the injection U —~ UR is
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defined via the logarithm and exponential. The map UR ~ V is defined
similarly.

As we have seen, the maps [dy, =]: Der_l(M) + L(U),
[d, -]: Der—l(M {x; R) » L(V) are surjective. Therefore, the Lemma and the

commutativity of the diagram,

Der T(M) i R —s L(U) < R

e

Der (M ‘x R) . L(\})

imply that L(U) 'x R -+ L(V) is surjective. Hence, via log and exp,
UR‘+ V is surjective as well.
Now, UR -+ V has unipotent kernel, so any rational point of V comes

from a rational point of U (see [S], §6). But the rational points of Ur
are precisely the points of U since, clearly, the rational points of
L(U) ‘x. R are exactly the points of L(U).

Suppose @(f) e V. Because f € Aut(M), @(f) is a rational point of
V and therefore comes from a point of U by the argument above. Now, @
is injective, so the only point of Aut(M) mapping to @(f) is £ itself.

Hence, f must be an element of U. That is, f 1is homotopic to the

identity, as was to be shown. QED Theorem A'.
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