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Abstract: In this work, we determined the general terms of t-balancers,
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1 Introduction

A positive integer n is called a balancing number ([2]) if the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.1)

holds for some positive integer r which is called balancer corresponding to n. If n is
a balancing number with balancer r, then from (1.1)

n2 =
(n+ r)(n+ r + 1)

2
and r =

−2n− 1 +
√

8n2 + 1

2
. (1.2)

From (1.2), they noted that n is a balancing number if and only if n2 is a triangular
number and 8n2 +1 is a perfect square. Though the definition of balancing numbers
suggests that no balancing number should be less than 2. But from (1.2), Behera
and Panda noted that 8(0)2 + 1 = 1 and 8(1)2 + 1 = 32 are perfect squares. So
they accepted 0 and 1 to be balancing numbers. Let Bn denote the nth balancing
number. Then B0 = 0, B1 = 1, B2 = 6 and Bn+1 = 6Bn −Bn−1 for n ≥ 2.

Later Panda and Ray ([12]) defined that a positive integer n is called a cobalan-
cing number if the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.3)

holds for some positive integer r which is called cobalancer corresponding to n. If n
is a cobalancing number with cobalancer r, then from (1.3)

n(n+ 1) =
(n+ r)(n+ r + 1)

2
and r =

−2n− 1 +
√

8n2 + 8n+ 1

2
. (1.4)
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From (1.4), they noted that n is a cobalancing number if and only if n(n + 1) is a
triangular number and 8n2 + 8n+ 1 is a perfect square. Since 8(0)2 + 8(0) + 1 = 1 is
a perfect square, they accepted 0 to be a cobalancing number just like Behera and
Panda accepted 0 and 1 to be balancing numbers. Let bn denote the nth cobalancing
number. Then b0 = b1 = 0, b2 = 2 and bn+1 = 6bn − bn−1 + 2 for n ≥ 2.

It is clear from (1.1) and (1.3) that every balancing number is a cobalancer and
every cobalancing number is a balancer, that is, Bn = rn+1 and Rn = bn for n ≥ 1,
where Rn is the nth the balancer and rn is the nth cobalancer. Since Rn = bn, we
get from (1.1) that

bn =
−2Bn − 1 +

√
8B2

n + 1

2
and Bn =

2bn + 1 +
√

8b2n + 8bn + 1

2
. (1.5)

Thus from (1.5), Bn is a balancing number if and only if 8B2
n + 1 is a perfect square

and bn is a cobalancing number if and only if 8b2n+ 8bn+ 1 is a perfect square. Thus

Cn =
√

8B2
n + 1 and cn =

√
8b2n + 8bn + 1 (1.6)

are integers which are called the nth Lucas-balancing number and nth Lucas-coba-
lancing number, respectively (Note that C0 = c0 = 1).

Let α = 1+
√

2 and β = 1−
√

2 be the roots of the characteristic equation for Pell
numbers which are the numbers defined by P0 = 0, P1 = 1 and Pn = 2Pn−1 + Pn−2

for n ≥ 2. Ray ([17]) derived some nice results on balancing numbers and Pell num-
bers his Phd thesis. Since x is a balancing number if and only if 8x2 + 1 is a perfect
square, he set 8x2 + 1 = y2 for some integer y ≥ 1. Then he get

y2 − 8x2 = 1 (1.7)

which is a Pell equation ([1, 3, 9]). The fundamental solution of (1.7) is (y1, x1) =
(3, 1). So yn + xn

√
8 = (3 +

√
8)n for n ≥ 1 and similarly yn − xn

√
8 = (3 −

√
8)n.

Let γ = 3+
√

8 and δ = 3−
√

8. Then he get xn = γn−δn
γ−δ which is the Binet formula

for balancing numbers, that is, Bn = γn−δn
γ−δ . Since α2 = γ and β2 = δ, he conclude

that the Binet formula for balancing numbers is

Bn =
α2n − β2n

4
√

2
.

Similarly

bn =
α2n−1 − β2n−1

4
√

2
− 1

2
, Cn =

α2n + β2n

2
and cn =

α2n−1 + β2n−1

2

for n ≥ 1 (see also [4, 10, 11, 15]).
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Balancing numbers and their generalizations have been investigated by seve-
ral authors from many aspects. In [7], Liptai proved that there is no Fibonacci
balancing number except 1 and in [8] he proved that there is no Lucas balancing
number. In [19], Szalay considered the same problem and obtained some nice results
by a different method. In [5], Kovács, Liptai and Olajos extended the concept of
balancing numbers to the (a, b)-balancing numbers defined as follows: Let a > 0 and
b ≥ 0 be coprime integers. If

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

for some integers n, r ≥ 1, then an+ b is an (a, b)-balancing number. The sequence

of (a, b)-balancing numbers is denoted by B
(a,b)
m for m ≥ 1. In [6], Liptai, Luca,

Pintér and Szalay generalized the notion of balancing numbers to numbers defined
as follows: Let y, k, l ∈ Z+ such that y ≥ 4. Then a positive integer x with x ≤ y−2 is
called a (k, l)-power numerical center for y if 1k+· · ·+(x−1)k = (x+1)l+· · ·+(y−1)l.
They studied the number of solutions of the equation above and proved several
effective and ineffective finiteness results for (k, l)-power numerical centers. For
integers k, x ≥ 1, let

Πk(x) = x(x+ 1) . . . (x+ k − 1).

Then it was proved in [5] that the equation Bm = Πk(x) for fixed integer k ≥ 2 has
only infinitely many solutions and for k ∈ {2, 3, 4} all solutions were determined. In
[21] Tengely, considered the case k = 5, that is, Bm = x(x+1)(x+2)(x+3)(x+4) and
proved that this Diophantine equation has no solution for m ≥ 0 and x ∈ Z. In [14],
Panda, Komatsu and Davala considered the reciprocal sums of sequences involving
balancing and Lucas-balancing numbers. In [16], Patel, Irmak and Ray considered
incomplete balancing and Lucas-balancing numbers and in [18], Ray considered the
sums of balancing and Lucas-balancing numbers by matrix methods.

Recently, almost balancing numbers first defined by Panda and Panda in [13]. A
natural number n is called an almost balancing number if the Diophantine equation

|[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− [1 + 2 + · · ·+ (n− 1)]| = 1

holds for some positive integer r which is called the almost balancer. In [20], the first
author derived some new results on almost balancing numbers, triangular numbers
and square triangular numbers.

2 t-Balancing numbers.

In this section we try to determine the general terms of all t-balancers, t-balancing
numbers and Lucas t-balancing numbers.
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Let t ≥ 1 be an integer. Then by considering (1.1), a positive integer n is called
a t-balancing number if the Diophantine equation

1 + 2 + · · ·+ n− 1 = (n+ 1 + t) + (n+ 2 + t) + · · ·+ (n+ r + t) (2.1)

holds for some positive integer r which is called t-balancer corresponding to n.

Let Bt
n denote the nth t-balancing number and let Rtn denote the nth t-balancer.

Then from (2.1), we get

Rtn =
−2Bt

n − 2t− 1 +
√

8(Bt
n)2 + 8tBt

n + (2t+ 1)2

2
and (2.2)

Bt
n =

2Rtn + 1 +
√

8(Rtn)2 + 8(t+ 1)Rtn + 1

2
. (2.3)

From (2.2), we note that Bt
n is a t-balancing number if and only if 8(Bt

n)2 + 8tBt
n +

(2t+ 1)2 is a perfect square. Thus

Ctn =
√

8(Bt
n)2 + 8tBt

n + (2t+ 1)2 (2.4)

is an integer which is called Lucas t-balancing number.

In order to determine the general terms of t-balancers, t-balancing numbers and
Lucas t-balancing numbers, we have to determine the set of all (positive) integer
solutions of the Pell equation

2x2 − y2 = 2t2 + 4t+ 1. (2.5)

We see from (2.3) that Rtn is a t-balancer if and only if 8(Rtn)2 + 8(t+ 1)Rtn + 1 is a
perfect square. So we set

8(Rtn)2 + 8(t+ 1)Rtn + 1 = y2 (2.6)

for some integer y ≥ 1. Then 2(2Rtn + t+ 1)2 − y2 = 2t2 + 4t+ 1 and putting

x = 2Rtn + t+ 1, (2.7)

we get the Pell equation defined in (2.5).

Now let ∆ be a non-square discriminant. Then the ∆-order O∆ is defined to be

the ring O∆ = {x + yρ∆ : x, y ∈ Z}, where ρ∆ =
√

∆
4 if ∆ ≡ 0(mod 4) or 1+

√
∆

2

if ∆ ≡ 1(mod 4). So O∆ is a subring of Q(
√

∆) ={x + y
√

∆ : x, y ∈ Q}. The unit
group Ou∆ is defined to be the group of units of the ring O∆.
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Let F (x, y) = ax2 + bxy + cy2 be an indefinite integral quadratic form ([3]) of

discriminant ∆ = b2 − 4ac. Then we can rewrite F (x, y) = ((xa + y b+
√

∆
2 )(xa + y

b−
√

∆
2 ))/a. So the module MF of F is

MF = {xa+ y
b+
√

∆

2
: x, y ∈ Z} ⊂ Q(

√
∆).

Therefore we get (u+ vρ∆)(xa+ y b+
√

∆
2 ) = x′a+ y′ b+

√
∆

2 , where

[x′ y′] =


[x y]

[
u− b

2v av

−cv u+ b
2v

]
if ∆ ≡ 0(mod 4)

[x y]

[
u+ 1−b

2 v av

−cv u+ 1+b
2 v

]
if ∆ ≡ 1(mod 4).

(2.8)

Let m be any integer and let Ω denote the set of all integer solutions of F (x, y) = m,
that is, Ω = {(x, y) : F (x, y) = m}. Then there is a bijection

Ψ : Ω→ {γ ∈MF : N(γ) = am}.

The action of Ou∆,1 = {α ∈ Ou∆ : N(α) = 1} on the set Ω is most interesting when ∆
is a positive non-square since Ou∆,1 is infinite. Therefore the orbit of each solution will
be infinite and so the set Ω is either empty or infinite. Since Ou∆,1 can be explicitly
determined, the set Ω is satisfactorily described by the representation of such a list,
called a set of representatives of the orbits. Let ε∆ be the smallest unit of O∆ that is
greater than 1 and let τ∆ = ε∆ if N(ε∆) = 1 or ε2

∆ if N(ε∆) = −1. Then every Ou∆,1
orbit of integral solutions of F (x, y) = m contains a solution (x, y) ∈ Z × Z such

that 0 ≤ y ≤ U , where U =
∣∣amτ∆

∆

∣∣ 1
2 (1− 1

τ∆
) if am > 0 or U =

∣∣amτ∆
∆

∣∣ 1
2 (1 + 1

τ∆
) if

am < 0. So for finding a set of representatives of the Ou∆,1 orbits of integral solutions
of F (x, y) = m, we must find for each integer y0 in the range 0 ≤ y0 ≤ U , whether
∆y2

0 + 4am is a perfect square or not since

ax2
0 + bx0y0 + cy2

0 = m⇔ ∆y2
0 + 4am = (2ax0 + by0)2. (2.9)

If ∆y2
0 + 4am is a perfect square, then from (2.9) we get

x0 =
−by0 ±

√
∆y2

0 + 4am

2a
.

So there is a set of representatives Rep = {[x0 y0]}. Consequently for the matrix
M defined in (2.8), the set of all integer solutions of F (x, y) = m is Ω = {±(x, y) :
[x y] = [x0 y0]Mn, n ∈ Z}. If ∆y2

0 + 4am is not a perfect square, then there are no
integer solutions.
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For the set of all integer solutions of (2.5), the indefinite form is F (x, y) = 2x2−y2

of discriminant ∆ = 8. So τ8 = 3 + 2
√

2 and

M =

[
3 4
2 3

]
(2.10)

from (2.8). Here we have two cases: 2t2 + 4t+ 1 is a perfect square or not for t ≥ 1.

2.1 Case 1: 2t2 + 4t+ 1 is a perfect square.

In this case, we can give the following theorem first.

Theorem 2.1. The quadratic Diophantine equation 2t2 + 4t + 1 = h2 is satisfied
for (t, h) = (P2n−1 − 1, cn) for n ≥ 2.

Proof. Let 2t2 + 4t + 1 = h2 for some integer h ≥ 1. Then 2(t + 1)2 − h2 = 1 and
taking t+1 = w, we get the Pell equation 2w2−h2 = 1. The set of representatives is
Rep = {[±1 1]} and in this case [1 −1]Mn generates all integer solutions (wn, hn) for

n ≥ 1 for M =

[
3 4
2 3

]
. It can be easily seen that Mn =

[
Cn 4Bn
2Bn Cn

]
for n ≥ 1.

So the set of all integer solutions of 2w2−h2 = 1 is {(−2Bn+Cn, 4Bn−Cn) : n ≥ 1}.
But we notice that−2Bn+Cn = P2n−1 and 4Bn−Cn = cn. So the quadratic equation
2t2 + 4t+ 1 = h2 is satisfied for (t, h) = (P2n−1 − 1, cn).

For the set of all integer solutions of (2.5) and the general terms of all t-balancers,
t-balancing numbers and Lucas t-balancing numbers, we have two cases: #Rep = 4
or #Rep > 4.

Theorem 2.2. If #Rep = 4, then

1. the set of all integer solutions is Ω = {(x3n+1, y3n+1) : n ≥ 0}∪{(x3n−1, y3n−1),
(x3n, y3n) : n ≥ 1}, where

(x3n+1, y3n+1) = (2Bn + (t+ 1)Cn, (4t+ 4)Bn + Cn)

(x3n−1, y3n−1) = (−2hBn + hCn, 4hBn − hCn)

(x3n, y3n) = (−2Bn + (t+ 1)Cn, (4t+ 4)Bn − Cn).

2. the general terms of t-balancers, t-balancing numbers and Lucas t-balancing
numbers are

Rt3n =
2Bn + (t+ 1)Cn − t− 1

2

Rt3n−1 =
−2Bn + (t+ 1)Cn − t− 1

2

Rt3n−2 =
−2hBn + hCn − t− 1

2
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Bt
3n =

(4t+ 6)Bn + (t+ 2)Cn − t
2

Bt
3n−1 =

(4t+ 2)Bn + tCn − t
2

Bt
3n−2 =

2hBn − t
2

Ct3n =
√

8(Bt
3n)2 + 8tBt

3n + (2t+ 1)2

Ct3n−1 =
√

8(Bt
3n−1)2 + 8tBt

3n−1 + (2t+ 1)2

Ct3n−2 =
√

8(Bt
3n−2)2 + 8tBt

3n−2 + (2t+ 1)2

for n ≥ 1.

Proof. (1) Let #Rep = 4. Then the set of representations is

Rep = {[±(t+ 1) 1], [±h h]},

and in this case

1. [t+ 1 1]Mn generates all integer solutions (x3n+1, y3n+1) for n ≥ 0,

2. [t+ 1 − 1]Mn generates all integer solutions (x3n, y3n) for n ≥ 1,

3. [h − h]Mn generates all integer solutions (x3n−1, y3n−1) for n ≥ 1.

Thus the set of all integer solutions is Ω = {(2Bn + (t + 1)Cn, (4t + 4)Bn + Cn) :
n ≥ 0}∪{(−2hBn+hCn, 4hBn−hCn), (−2Bn+(t+1)Cn, (4t+4)Bn−Cn) : n ≥ 1}.

(2) Note that x = 2Rtn + t+ 1 from (2.7). So

Rt3n =
2Bn + (t+ 1)Cn − t− 1

2

and from (2.3) and (2.6), we observe that

Bt
3n =

2Rt3n + 1 +
√

8(Rt3n)2 + 8(t+ 1)Rt3n + 1

2

=
2Bn + (t+ 1)Cn − t− 1 + 1 + (4t+ 4)Bn + Cn

2

=
(4t+ 6)Bn + (t+ 2)Cn − t

2

Thus

Ct3n =
√

8(Bt
3n)2 + 8tBt

3n + (2t+ 1)2

by (2.4). The other cases can be proved similarly.
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Theorem 2.3. If #Rep = 2k > 4, then

1. the set of all integer solutions is

Ω = {(x(2k−1)n+1, y(2k−1)n+1), (x(2k−1)n+i+1, y(2k−1)n+i+1),

(x(2k−1)n+k, y(2k−1)n+k) : n ≥ 0} ∪
{(x(2k−1)n, y(2k−1)n), (x(2k−1)n−i, y(2k−1)n−i) : n ≥ 1},

where

(x(2k−1)n+1, y(2k−1)n+1) = (2Bn + (t+ 1)Cn, (4t+ 4)Bn + Cn)

(x(2k−1)n+i+1, y(2k−1)n+i+1) = (2t2iBn + t2i−1Cn, 4t2i−1Bn + t2iCn)

(x(2k−1)n+k, y(2k−1)n+k) = (2hBn + hCn, 4hBn + hCn)

(x(2k−1)n, y(2k−1)n) = (−2Bn + (t+ 1)Cn, (4t+ 4)Bn − Cn)

(x(2k−1)n−i, y(2k−1)n−i) = (−2t2iBn + t2i−1Cn, 4t2i−1Bn − t2iCn).

2. the general terms of t-balancers, t-balancing numbers and Lucas t-balancing
numbers are

Rt(2k−1)n =
2Bn + (t+ 1)Cn − t− 1

2

Rt(2k−1)n−1 =
−2Bn + (t+ 1)Cn − t− 1

2

Rt(2k−1)n−i−1 =
−2t2iBn + t2i−1Cn − t− 1

2

Bt
(2k−1)n =

(4t+ 6)Bn + (t+ 2)Cn − t
2

Bt
(2k−1)n−1 =

(4t+ 2)Bn + tCn − t
2

Bt
(2k−1)n−i−1 =

(−2t2i + 4t2i−1)Bn + (t2i−1 − t2i)Cn − t
2

Ct(2k−1)n =
√

8(Bt
(2k−1)n)2 + 8tBt

(2k−1)n + (2t+ 1)2

Ct(2k−1)n−1 =
√

8(Bt
(2k−1)n−1)2 + 8tBt

(2k−1)n−1 + (2t+ 1)2

Ct(2k−1)n−i−1 =
√

8(Bt
(2k−1)n−i−1)2 + 8tBt

(2k−1)n−i−1 + (2t+ 1)2

for n ≥ 1 and

Rt(2k−1)n+i =
2t2iBn + t2i−1Cn − t− 1

2

Rt(2k−1)n+k−1 =
2hBn + hCn − t− 1

2
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Bt
(2k−1)n+i =

(2t2i + 4t2i−1)Bn + (t2i−1 + t2i)Cn − t
2

Bt
(2k−1)n+k−1 =

6hBn + 2hCn − t
2

Ct(2k−1)n+i =
√

8(Bt
(2k−1)n+i)

2 + 8tBt
(2k−1)n+i + (2t+ 1)2

Ct(2k−1)n+k−1 =
√

8(Bt
(2k−1)n+k−1)2 + 8tBt

(2k−1)n+k−1 + (2t+ 1)2

for n ≥ 0,

where t2i−1 and t2i are positive integers such that 2t22i−1− t22i = 2t2 +4t+1 for 1 ≤ i
≤ k − 2, t+ 1 < t1 < t3 < · · · < t2k−5 < h and 1 < t2 < t4 < · · · < t2k−4 < h.

Proof. (1) Let #Rep > 4. Then the set of representations is

Rep = {[±(t+ 1) 1], [±t2i−1 t2i], [±h h]},

where t2i−1 and t2i are positive integers such that 2t22i−1− t22i = 2t2 +4t+1 for 1 ≤ i
≤ k − 2, t+ 1 < t1 < t3 < · · · < t2k−5 < h and 1 < t2 < t4 < · · · < t2k−4 < h. Here

1. [t+ 1 1]Mn generates all integer solutions (x(2k−1)n+1, y(2k−1)n+1) for n ≥ 0,

2. [t2i−1 t2i]M
n generates all integer solutions (x(2k−1)n+i+1, y(2k−1)n+i+1) for

n ≥ 0,

3. [h h]Mn generates all integer solutions (x(2k−1)n+k, y(2k−1)n+k) for n ≥ 0,

4. [t+ 1 − 1]Mn generates all integer solutions (x(2k−1)n, y(2k−1)n) for n ≥ 1,

5. [t2i−1 −t2i]Mn generates all integer solutions (x(2k−1)n−i, y(2k−1)n−i) for n ≥ 1.

Thus the set of all integer solutions is Ω = {(2Bn+(t+1)Cn, (4t+4)Bn+Cn), (2t2iBn+
t2i−1Cn, 4t2i−1Bn+t2iCn), (2hBn+hCn, 4hBn+hCn) : n ≥ 0}∪{(−2Bn+(t+1)Cn,
(4t+ 4)Bn − Cn), (−2t2iBn + t2i−1Cn, 4t2i−1Bn − t2iCn) : n ≥ 1}.

(2) It can be proved as in the same way that Theorem 2.2 was proved.

When #Rep = 2k > 4, it is impossible to determine the set of representatives
and #Rep in terms of t. For example in Table 1, the set of representatives is given
for some values of t. That is why we assume that the set of representatives is Rep
= {[±(t+ 1) 1], [±t2i−1 t2i], [±h h]}, where t2i−1 and t2i are positive integers such
that 2t22i−1 − t22i = 2t2 + 4t + 1 for 1 ≤ i ≤ k − 2, t+ 1 < t1 < t3 < · · · < t2k−5 < h
and 1 < t2 < t4 < · · · < t2k−4 < h.
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Table 1.

t set of representatives

984
{[±985 1], [±995 199], [±1025 401],

[±1267 1127], [±1393 1393]}

5740
{[±5741 1], [±6001 2471], [±6739 4991],

[±6805 5167], [±8119 8119]}

33460
{[±33461 1], [±35155 15247], [±38935 28153],

[±40409 32039], [±47321 47321]}

195024

{[±195025 1], [±195083 6767], [±195257 13457],

[±197005 39401], [±197743 46207], [±199547 59737],

[±202985 79601], [±205933 93527], [±205973 93703],

[±207607 100657], [±209405 107849], [±211327 115103],

[±219883 143623], [±222425 151249], [±227837 166583],

[±236623 189503], [±243355 205849], [±243443 206057],

[±246977 214303], [±250747 222887], [±254665 231601],

[±271133 266377], [±275807 275807]}

2.2 Case 2: 2t2 + 4t+ 1 is not a perfect square.

In this case we again two cases: #Rep = 2 or #Rep > 2.

Theorem 2.4. If #Rep = 2, then

1. the set of all integer solutions is Ω = {(x2n+1, y2n+1) : n ≥ 0} ∪ {(x2n, y2n) :
n ≥ 1}, where

(x2n+1, y2n+1) = (2Bn + (t+ 1)Cn, (4t+ 4)Bn + Cn)

(x2n, y2n) = (−2Bn + (t+ 1)Cn, (4t+ 4)Bn − Cn).

2. the general terms of t-balancers, t-balancing numbers and Lucas t-balancing
numbers are

Rt2n =
2Bn + (t+ 1)Cn − t− 1

2

Rt2n−1 =
−2Bn + (t+ 1)Cn − t− 1

2

Bt
2n =

t(cn+1 − 1) + 2Bn+1

2
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Bt
2n−1 =

t(cn+1 − 1) + 2Bn
2

Ct2n =
√

8(Bt
2n)2 + 8tBt

2n + (2t+ 1)2

Ct2n−1 =
√

8(Bt
2n−1)2 + 8tBt

2n−1 + (2t+ 1)2

for n ≥ 1.

Proof. (1) Let #Rep = 2. Then the set of representatives is

Rep = {[±(t+ 1) 1]}.

In this case [t+ 1 1]Mn generates all integer solutions (x2n+1, y2n+1) for n ≥ 0 and
[t+ 1 − 1]Mn generates all integer solutions (x2n, y2n) for n ≥ 1. Thus the set of all
integer solutions is Ω = {(2Bn+(t+1)Cn, (4t+4)Bn+Cn) : n ≥ 0}∪{(−2Bn+(t+1)
Cn, (4t+ 4)Bn − Cn) : n ≥ 1}.

(2) From (1), we observe that

Rt2n =
2Bn + (t+ 1)Cn − t− 1

2
.

Hence from (2.3) and (2.6), we get

Bt
2n =

2Rt2n + 1 +
√

8(Rt2n)2 + 8(t+ 1)Rt2n + 1

2

=
2Bn + (t+ 1)Cn − t− 1 + 1 + (4t+ 4)Bn + Cn

2

=
t(4Bn + Cn − 1) + 6Bn + 2Cn

2

=
t
(

4(α
2n−β2n

4
√

2
) + α2n+β2n

2 − 1
)

+ 6(α
2n−β2n

4
√

2
) + 2(α

2n+β2n

2 )

2

=
t
(
α2n( 1√

2
+ 1

2) + β2n(−1√
2

+ 1
2)− 1

)
+ α2n( 3

2
√

2
+ 1) + β2n( −3

2
√

2
+ 1)

2

=
t(α

2n+1+β2n+1

2 − 1) + 2(α
2n+2−β2n+2

4
√

2
)

2

=
t(cn+1 − 1) + 2Bn+1

2
.

Thus

Ct2n =
√

8(Bt
2n)2 + 8tBt

2n + (2t+ 1)2

by (2.4). The others can be proved similarly.
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Theorem 2.5. If #Rep = 2k > 2, then

1. the set of all integer solutions is Ω = {(x2kn+1, y2kn+1), (x2kn+i+1, y2kn+i+1) :
n ≥ 0} ∪ {(x2kn, y2kn), (x2kn−i, y2kn−i) : n ≥ 1}, where

(x2kn+1, y2kn+1) = (2Bn + (t+ 1)Cn, (4t+ 4)Bn + Cn)

(x2kn+i+1, y2kn+i+1) = (2t2iBn + t2i−1Cn, 4t2i−1Bn + t2iCn)

(x2kn, y2kn) = (−2Bn + (t+ 1)Cn, (4t+ 4)Bn − Cn)

(x2kn−i, y2kn−i) = (−2t2iBn + t2i−1Cn, 4t2i−1Bn − t2iCn).

2. the general terms of t-balancers, t-balancing numbers and Lucas t-balancing
numbers are

Rt2kn =
2Bn + (t+ 1)Cn − t− 1

2

Rt2kn−1 =
−2Bn + (t+ 1)Cn − t− 1

2

Rt2kn−i−1 =
−2t2iBn + t2i−1Cn − t− 1

2

Bt
2kn =

t(cn+1 − 1) + 2Bn+1

2

Bt
2kn−1 =

t(cn+1 − 1) + 2Bn
2

Bt
2kn−i−1 =

(−2t2i + 4t2i−1)Bn + (t2i−1 − t2i)Cn − t
2

Ct2kn =
√

8(Bt
2kn)2 + 8tBt

2kn + (2t+ 1)2

Ct2kn−1 =
√

8(Bt
2kn−1)2 + 8tBt

2kn−1 + (2t+ 1)2

Ct2kn−i−1 =
√

8(Bt
2kn−i−1)2 + 8tBt

2kn−i−1 + (2t+ 1)2

for n ≥ 1 and

Rt2kn+i =
2t2iBn + t2i−1Cn − t− 1

2

Bt
2kn+i =

(2t2i + 4t2i−1)Bn + (t2i−1 + t2i)Cn − t
2

Ct2kn+i =
√

8(Bt
2kn+i)

2 + 8tBt
2kn+i + (2t+ 1)2

for n ≥ 0,
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where t2i−1 and t2i are positive integers such that 2t22i−1− t22i = 2t2 +4t+1 for 1 ≤ i
≤ k − 1, t+ 1 < t1 < t3 < · · · < t2k−3 and 1 < t2 < t4 < · · · < t2k−2.

Proof. (1) Let #Rep = 2k > 2. Then the set of representatives is

Rep = {[±(t+ 1) 1], [±t2i−1 t2i]},

where t2i−1 and t2i are positive integers such that 2t22i−1− t22i = 2t2 +4t+1 for 1 ≤ i
≤ k − 1, t+ 1 < t1 < t3 < · · · < t2k−3 and 1 < t2 < t4 < · · · < t2k−2. Here

1. [t+ 1 1]Mn generates all integer solutions (x2kn+1, y2kn+1) for n ≥ 0,

2. [t+ 1 − 1] Mn generates all integer solutions (x2kn, y2kn) for n ≥ 1,

3. [t2i−1 t2i]M
n generates all integer solutions (x2kn+i+1, y2kn+i+1) for n ≥ 0,

4. [t2i−1 − t2i]Mn generates all integer solutions (x2kn−i, y2kn−i) for n ≥ 1.

Thus the set of all integer solutions is Ω = {(2Bn+(t+1)Cn, (4t+4)Bn+Cn), (2t2iBn+
t2i−1Cn, 4t2i−1Bn+t2iCn) : n ≥ 0}∪{(−2Bn+(t+1)Cn, (4t+4)Bn−Cn), (−2t2iBn+
t2i−1Cn, 4t2i−1Bn − t2iCn) : n ≥ 1}.

(2) It can be proved as in the same way that Theorem 2.4 was proved.

Again when #Rep = 2k > 2, it is impossible to determine the set of representa-
tives and #Rep in terms of t. For example in Table 2, the set of representatives is
given for some values of t.

Table 2.

t set of representatives

11 {[±12 1], [±16 15]}
28 {[±29 1], [±41 41]}
43 {[±44 1], [±46 19], [±56 49]}
57 {[±58 1], [±62 31], [±74 65]}
36 {[±37 1], [±41 25], [±43 31], [±47 41]}
53 {[±54 1], [±56 21], [±60 37], [±70 63]}

That is why we assume that the set of representatives is Rep = {[±(t+1) 1], [±t2i−1 t2i]},
where t2i−1 and t2i are positive integers such that 2t22i−1− t22i = 2t2 +4t+1 for 1 ≤ i
≤ k − 1, t+ 1 < t1 < t3 < · · · < t2k−3 and 1 < t2 < t4 < · · · < t2k−2.
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